4.5 置换矩阵

4.5 置换矩阵

是不是任意可逆矩阵都可进行 L D U LDU LDU 分解呢?其实不能,消元操作需要除以对角元素 a i i a_{ii} aii ,当其为 0 0 0 时,则会失败。这时可在下面行中选择任一对角元素不为 0 0 0 的行,对调这两行,则可继续消元。例如

A = [ 0 0 2 1 2 3 0 1 2 ] A= \left[ \begin{matrix} 0 & 0 & 2\\ 1 & 2 & 3\\ 0 & 1 & 2 \end{matrix} \right] A=010021232

第一行第一个元素 a 11 a_{11} a11 0 0 0 ,无法消除第二行第一列的非零元素。矩阵后面两行中,第二行第一个元素 a 21 a_{21} a21 非零,则对调这两行,矩阵变换为
[ 1 2 3 0 0 2 0 1 2 ] \left[ \begin{matrix} 1 & 2 & 3\\ 0 & 0 & 2\\ 0 & 1 & 2 \end{matrix} \right] 100201322

此时第一列元素除对角线外已经都是 0 0 0 。同理消除第二列时,第二行对角线元素为 0 0 0 ,此时也需要对调后两行,矩阵变换为

[ 1 2 3 0 1 2 0 0 2 ] \left[ \begin{matrix} 1 & 2 & 3\\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{matrix} \right] 100210322

成为上三角阵。

重要性质 对任意可逆矩阵,经过适当的行对调操作,可以分解为 L D U LDU LDU

类似消元操作,行对调操作也可以用矩阵乘法实现,该矩阵称为置换矩阵。

定义 置换矩阵 矩阵 P i j P_{ij} Pij 是单位矩阵 E E E 对调 i , j i,j i,j 两行所得。

例如
P 12 = [ 0 1 0 1 0 0 0 0 1 ] P 13 = [ 0 0 1 0 1 0 1 0 0 ] P 23 = [ 1 0 0 0 0 1 0 1 0 ] P_{12}= \left[ \begin{matrix} 0 & 1 & 0\\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{matrix} \right] P_{13}= \left[ \begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0\\ 1 & 0 & 0 \end{matrix} \right] P_{23}= \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right] P12=010100001P13=001010100P23=100001010

矩阵 A A A 列向量左乘置换矩阵 P i j P_{ij} Pij 就是对调向量的 i , j i,j i,j 两个分量。
P i j a k = P i j ( a 1 k , ⋯   , a i k , ⋯   , a j k , ⋯   , a m k ) = ( a 1 k , ⋯   , a j k , ⋯   , a i k , ⋯   , a m k ) P_{ij}\mathbf{a}_k = P_{ij}(a_{1k},\cdots,a_{ik},\cdots,a_{jk},\cdots,a_{mk}) = (a_{1k},\cdots,a_{jk},\cdots,a_{ik},\cdots,a_{mk}) Pijak=Pij(a1k,,aik,,ajk,,amk)=(a1k,,ajk,,aik,,amk)

P i j A P_{ij}A PijA 就是对调矩阵 A A A ( i , j ) (i,j) (i,j) 两行。

置换矩阵是正交矩阵, P T P = E P^TP=E PTP=E 。对矩阵进行多次行对调操作,就是多个置换矩阵连乘,记为 P P P P P P 是单位矩阵 E E E 进行相应的多次行对调结果。

P = P 21 P 32 = [ 0 0 1 1 0 0 0 1 0 ] P=P_{21}P_{32}= \left[ \begin{matrix} 0 & 0 & 1\\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix} \right] P=P21P32=010001100

重要性质 对任意可逆矩阵 A A A,经过适当的行对调操作 P P P,可以分解为 P A = L D U PA = LDU PA=LDU

我们还可以换个角度看待 P A = L D U PA = LDU PA=LDU ,由于各矩阵均可逆,得 ( L D U ) − 1 P A = E (LDU)^{-1}PA = E (LDU)1PA=E ,令 P ′ = ( L D U ) − 1 P P'=(LDU)^{-1}P P=(LDU)1P P ′ A = E P'A=E PA=E ,这说明 P ′ P' P 是逆矩阵 A − 1 A^{-1} A1。通过高斯消元法可得到逆矩阵 A − 1 = U − 1 D − 1 L − 1 P A^{-1}=U^{-1}D^{-1}L^{-1}P A1=U1D1L1P ,对角阵 D D D 可逆,需对角元素均不为零,故矩阵 A A A 主元均不为零时,矩阵 A A A 可逆。

当矩阵 A A A 是对称矩阵时,假设没有行对调,则 S = L D U S = LDU S=LDU ,取转置, S T = ( L D U ) T = U T D T L T = U T D L T = S = L D U S^T = (LDU)^T=U^TD^TL^T=U^TDL^T=S=LDU ST=(LDU)T=UTDTLT=UTDLT=S=LDU ,所以有 L T = U L^T=U LT=U 成立。

重要性质 对称矩阵,假设没有行对调,则可以分解为 S = L D L T S = LDL^T S=LDLT

<think>好的,用户现在想了解循环置换矩阵的概念或实现方法,具体包括算法和示例。首先,我需要回顾一下之前关于矩阵循环移位的回答,因为循环置换矩阵可能与循环移位有关联。 用户之前的提问是关于矩阵的循环移位,我解释了行和列循环移位的实现方法,并提供了Python代码示例。现在用户提到“循环置换矩阵”,这应该是一个数学或线性代数中的概念,可能涉及置换矩阵和循环移位的结合。 根据用户提供的引用,特别是引用[2]提到了置换矩阵的定义:置换矩阵左乘可以交换行,右乘交换列,且置换矩阵乘以自身转置得到单位矩阵。而引用[4]中的AES算法中的行移位操作是循环左移,这可能与循环置换矩阵有关联。因此,循环置换矩阵可能是一种特殊的置换矩阵,用于实现循环移位操作。 接下来需要明确循环置换矩阵的定义。通常,置换矩阵是每行每列只有一个1,其余为0的矩阵。循环置换矩阵可能在此基础上具有循环性,例如,每一行相对于前一行向右或向左循环移位一位。例如,一个3x3的循环置换矩阵可能形如: 0 0 1 1 0 0 0 1 0 这对应将行向下循环移位一位,或者列向右移位一位。 用户可能需要了解如何构造这样的矩阵,以及其在算法中的应用,比如在密码学或矩阵运算中的使用。根据引用[3]和[4],置换密码和AES中的行移位可能使用了类似的循环置换结构。 接下来需要考虑如何将循环移位操作转化为置换矩阵的形式。例如,行循环右移k位可以通过左乘一个置换矩阵来实现,而列循环右移k位可以通过右乘置换矩阵。需要说明如何构造这样的矩阵,并给出数学表示和代码示例。 另外,用户可能希望看到具体的算法步骤和实现代码,比如生成循环置换矩阵的函数,以及如何用该矩阵对原矩阵进行变换。可能需要结合之前的Python代码,将循环移位操作替换为矩阵乘法,以展示置换矩阵的作用。 需要注意引用中的内容,比如引用[2]提到置换矩阵的性质,应该在回答中引用。同时,引用[4]中的AES行移位操作可以作为应用案例,说明循环置换矩阵的实际用途。 最后,要确保回答结构清晰,分点解释概念、数学表示、算法步骤、代码示例和应用场景,并生成相关问题。需要检查LaTeX格式是否正确,行内公式用$...$,独立公式用$$...$$,并正确标注引用。</think>#### 循环置换矩阵的概念与实现方法 循环置换矩阵是**特殊类型的置换矩阵**,通过循环移位操作定义,常用于密码学、线性代数矩阵变换领域[^2][^4]。其核心特性是通过矩阵乘法实现行/列的循环移位操作。 --- ### 一、数学定义 1. **基本形式** - **行循环置换矩阵** $P_r$:左乘该矩阵可使原矩阵的**行向下循环移位** - **列循环置换矩阵** $P_c$:右乘该矩阵可使原矩阵的**列向右循环移位** 2. **结构示例(3×3矩阵右移1位)** $$P_r = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$ 左乘 $P_r$ 后,原矩阵各行向下循环移动1位。 3. **通用构造规则** 对于 $n \times n$ 矩阵,移位量为 $k$ 时,循环置换矩阵 $P$ 满足: $$P_{i,j} = \begin{cases} 1 & \text{当 } j = (i + k) \ \% \ n \\ 0 & \text{其他情况} \end{cases}$$ --- ### 二、算法实现 #### 1. 生成循环置换矩阵 **Python示例**: ```python def generate_cyclic_permutation_matrix(n, shift, direction='row'): matrix = [[0] * n for _ in range(n)] for i in range(n): if direction == 'row': j = (i + shift) % n # 行循环下移 else: j = (i - shift) % n # 列循环右移 matrix[i][j] = 1 return matrix # 示例:生成3x3行循环下移1位的置换矩阵 print(generate_cyclic_permutation_matrix(3, 1)) # 输出: [[0, 0, 1], [1, 0, 0], [0, 1, 0]] ``` #### 2. 应用循环置换矩阵 - **行循环移位**:原矩阵 $A$ 左乘 $P_r$,即 $A_{\text{shifted}} = P_r \cdot A$ - **列循环移位**:原矩阵 $A$ 右乘 $P_c$,即 $A_{\text{shifted}} = A \cdot P_c$ **示例代码**: ```python import numpy as np # 原矩阵 A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 生成行循环置换矩阵 P_r = generate_cyclic_permutation_matrix(3, 1) # 行下移1位 A_shifted = np.dot(P_r, A) print("移位后矩阵:\n", A_shifted) ``` --- ### 三、关键特性 1. **正交性** 循环置换矩阵满足 $P \cdot P^T = I$(单位矩阵),说明其具有正交性[^2]。 2. **幂等性** 连续应用 $n$ 次移位量为1的循环置换矩阵等价于单位矩阵,即 $P^n = I$。 3. **组合性** 不同移位量的循环置换矩阵相乘仍为循环置换矩阵,例如 $P^{k_1} \cdot P^{k_2} = P^{(k_1 + k_2) \ \% \ n}$。 --- ### 四、应用场景 1. **密码学** - AES加密算法中**行移位(ShiftRows)**操作本质是循环置换矩阵的应用[^4]。 - 置换密码中通过置换矩阵实现字符位置混淆[^3]。 2. **图像处理** 实现像素矩阵的循环滚动特效。 3. **矩阵相似性检测** 通过循环置换矩阵判断矩阵是否具有循环对称性[^2]。 --- ### 五、扩展:循环置换矩阵与循环移位的关系 循环移位操作可通过**矩阵乘法**实现: - 行循环移位:$A_{\text{shifted}} = P_r \cdot A$ - 列循环移位:$A_{\text{shifted}} = A \cdot P_c$ 例如,AES的`ShiftRows`操作中,4×4字节矩阵的每一行左移不同的位数,这等价于对每行应用不同移位量的循环置换矩阵[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值