正定矩阵与半正定矩阵

作者:cwaar
链接:https://www.zhihu.com/question/22098422/answer/35874276
来源:知乎

首先半正定矩阵定义为: 

X^TMX \geq 0
其中 X 是向量,M 是变换矩阵。

我们换一个思路看这个问题,矩阵变换中,MX 代表对向量 X 进行变换,我们假设变换后的向量为 Y,记做 Y=MX。于是半正定矩阵可以写成:

X^TY \geq 0

这个是不是很熟悉呢? 他是两个向量的内积(xT、Y 均是向量,且维度一样,所以乘积就是两者的内积)。 同时我们也有公式:

cos(\theta) = \frac{X^TY}{||X||* ||Y||}

||X||, ||Y||代表向量 X,Y的长度,\theta 是他们之间的夹角。 于是半正定矩阵意味着 cos(\theta)\geq 0, 这下明白了么?

正定、半正定矩阵 M 就是代表:一个向量 (a) 经过它 (M) 变化后的向量(b), 与其本身 (a) 的夹角小于等于90度。(a b 间的夹角<= 90度)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值