Leetcode 1015. 可被 K 整除的最小整数

Leetcode 1015. 可被 K 整除的最小整数

假设这个数是 k k k,如果 K K K满足要求,那么必定存在等式 n K = 111 ⋯ 111 nK=111 \cdots 111 nK=111111,我们的思路是如何求解这个 n n n

在这里,我们令 n = n 0 × 1 + n 1 × 10 + n 2 × 100 + … + + n c × 1 0 c n=n_{0} \times 1 + n_{1} \times 10 + n_{2} \times 100 + \ldots + + n_{c} \times 10^{c} n=n0×1+n1×10+n2×100+++nc×10c,即序列 < n c n c − 1 … n 1 n 0 > <n_{c}n_{c-1} \ldots n_{1}n_{0}> <ncnc1n1n0>就是 n n n的每一位。

第一步

我们模拟竖式乘法的过程,乘积 n K nK nK如果最后一位等于 1 1 1,那么乘积 n 0 K n_{0}K n0K的最后一位也必然等于1。(这里和下文的最后一位都是指的最低位)此时我们就需要搬出我们小学二年级学习的九九乘法表了。

src=http___gss0.baidu.com_9fo3dSag_xI4khGko9WTAnF6hhy_zhidao_pic_item_c2fdfc039245d68866619b19a4c27d1ed21b242f.jpg&refer=http___gss0.baidu.jfif

观察上表,我们发现只有当 K K K的最后一位为 1 , 3 , 7 , 9 1,3,7,9 1,3,7,9的时候,才有对应的 n 0 n_{0} n0存在,即下表:

K的最后一位 n 0 n_{0} n0乘积
111
3721
7321
9981

除此之外我们找不到其他的组合了。因此我们检查 K K K的最低位 K 0 K_{0} K0是否为 1 , 3 , 7 , 9 1,3,7,9 1,3,7,9,如果是那么必定有解,如果不是那么必定无解。(下文解释为什么必定有解)

第二步

到这里,乘积 n K nK nK的最后一位已经是 1 1 1了,我们再令下一位也是 1 1 1。此时决定乘积 n K nK nK倒数第二位结果的是 n 1 n_{1} n1。但是和第一步不同的是,此时决定乘积 n K nK nK倒数第二位结果的还有上一步的乘积,如下图:

乘积.PNG

例如上图, K = 7 K = 7 K=7,乘积 n K nK nK的倒数第二位的结果应该是 7 × n 1 7 \times n_{1} 7×n1的最后一位加上 3 × 7 3 \times 7 3×7的该位上的结果 2 2 2,那么 n 1 n_{1} n1应该是几呢,我们知道 7 × n 1 7 \times n_{1} 7×n1的最后一位应该是 9 9 9 9 + 2 = 11 9 + 2 = 11 9+2=11正好落 1 1 1 1 1 1,那么 n 1 n_{1} n1是几, n 1 × 7 n_{1} \times 7 n1×7的最后一位能是 9 9 9呢,我们继续查表,发现仅有 7 × 7 = 49 7 \times 7 = 49 7×7=49,最后一位才是9,因此 n 1 = 7 n_{1} = 7 n1=7

剩下过程就是继续这个操作,一直到不需要再乘下去,乘积的每一位都是 1 1 1结束。

第三步

那就是证明必定有解。调节每一位都是由 n i × K 0 n_{i} \times K_{0} ni×K0得到的,又因为 K 0 K_{0} K0只能是 1 , 3 , 7 , 9 1,3,7,9 1,3,7,9,我们看看乘法表,发现凡是和 1 , 3 , 7 , 9 1,3,7,9 1,3,7,9相乘的乘积最后一位正好覆盖了从 0 0 0 9 9 9的所有数字(0就是和0乘),必定能够调节任何数字,使该位的结果为 1 1 1,因此必定有解。

代码

class Solution
{
public:
    int arr[10][10];

    int smallestRepunitDivByK(int K)
    {
        // 1,3,7,9
        int good[] = {1, 3, 7, 9};

        // 构造乘法表,arr[i][j]表示K的最后一位是i,我想要最后一位结果是j的因子
        for (int i = 0; i < 4; i++)
        {
            for (int k = 0; k <= 9; k++)
            {
                int ans = good[i] * k;

                arr[good[i]][ans % 10] = k;
            }
        }

        // 取K的最后一位
        int tail = K % 10;

        // 不是1,3,7,9直接输出-1
        if (tail != 1 && tail != 3 && tail != 7 && tail != 9)
        {
            return -1;
        }

        // sum 表示当前乘积的和
        int sum = 0;
        int cnt = 0;
        // 如果sum=1,不需要任何操作,直接把sum落下来即可
        while (sum != 1)
        {
            // sum最后一位肯定是1,扔掉让加和的时候能对齐
            sum /= 10;
            // 取上一次的结果
            int t = sum % 10;
            // 需要加上的数字才能令该位等于1,例如t等于0,需要1才能令1+0=1;t=3,需要8才能令3+8=11
            int need = (11 - t) % 10;
            // 取得ni
            int fact = arr[tail][need];
            // 相乘累加结果
            sum += K * fact;
            cnt++;
        }
        return cnt;
    }
};

扩展

  1. 如果要求出 n n n,直接拼接 f a c t fact fact即可
  2. 此题要求1的位数最小,那么有没有不是最小的情况呢?答案是肯定的,当 s u m = 1 sum=1 sum=1的时候我们不停止,继续该过程。此时对应的 N K = 111 ⋯ 111 NK=111 \cdots 111 NK=111111 N N N的形式一定是 n 0 n 0 n 0 n 0 n … n0n0n0n0n \ldots n0n0n0n0n,即 n n n 0 0 0交替出现。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值