概率论详解

本文深入探讨了概率论与动态规划在解决算法问题中的应用。通过全概率公式和期望计算,展示了如何在图最短路径问题中运用这两种方法。同时,讲解了如何通过分解期望简化复杂计算,以及线性递推在实际问题中的解决策略。实例代码展示了具体的实现过程,涉及概率计算、状态转移方程和动态规划技巧。
摘要由CSDN通过智能技术生成

概率论详解

概率DP

期望DP

原理:

全概率公式。

对某个值的期望就是值乘以概率的和。

P1850

#include <bits/stdc++.h>

using namespace std;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out.txt", "w", stdout)

typedef long long ll;

#define INF 500000

int n, m, v, e;

int ci[2005];
int di[2005];
double pi[2005];

int mp[305][305];

double dp[2005][2];

void flody()
{
    for (int k = 1; k <= v; k++)
        for (int i = 1; i <= v; i++)
            for (int j = 1; j <= v; j++)
            {
                mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
            }
}

int main()
{
    scanf("%d %d %d %d", &n, &m, &v, &e);

    for (int i = 1; i <= n; i++)
    {
        scanf("%d", ci + i);
    }

    for (int i = 1; i <= n; i++)
    {
        scanf("%d", di + i);
    }

    for (int i = 1; i <= n; i++)
    {
        scanf("%lf", pi + i);
    }

    for (int i = 1; i <= v; i++)
        for (int j = 1; j <= v; j++)
        {
            mp[i][j] = INF;
        }

    for (int i = 1; i <= e; i++)
    {
        int u, v, w;
        scanf("%d %d %d", &u, &v, &w);
        mp[u][v] = mp[v][u] = min(mp[u][v], w);
    }

    for (int i = 1; i <= v; i++)
        mp[i][i] = 0;

    flody();

    // DP
    dp[0][1] = INF;
    for (int i = 2; i <= n; i++)
    {
        for (int j = m; j >= 1; j--)
        {
            // 递推:全概率公式
            // 期望:对某个值的期望就是值乘以概率的和
            dp[j][0] = min(dp[j][0] + mp[ci[i - 1]][ci[i]],
                           dp[j][1] +
                               pi[i - 1] * mp[di[i - 1]][ci[i]] +
                               (1 - pi[i - 1]) * mp[ci[i - 1]][ci[i]]);
            dp[j][1] = min(dp[j - 1][0] + pi[i] * mp[ci[i - 1]][di[i]] + (1 - pi[i]) * mp[ci[i - 1]][ci[i]],
                           dp[j - 1][1] +
                               pi[i - 1] * pi[i] * mp[di[i - 1]][di[i]] +
                               pi[i - 1] * (1 - pi[i]) * mp[di[i - 1]][ci[i]] +
                               (1 - pi[i - 1]) * pi[i] * mp[ci[i - 1]][di[i]] +
                               (1 - pi[i - 1]) * (1 - pi[i]) * mp[ci[i - 1]][ci[i]]);
        }
        dp[0][0] += mp[ci[i - 1]][ci[i]];
    }
    printf("%.2f", min(dp[m][0], dp[m][1]));
    return 0;
}

分解期望

有时候期望的总体情况不太好求,我们可以使用分解期望。

P3802

我们设 X i X_i Xi为在第 i i i个位置释放七重奏的次数,因此总的次数就是 X = X 7 + X 8 + … + X n X = X_7+X_8+\ldots+X_n X=X7+X8++Xn。因而期望也就是 E ( X ) = E ( X 7 ) + E ( X 8 ) + … + E ( X n ) E(X) = E(X_7)+E(X_8)+\ldots+E(X_n) E(X)=E(X7)+E(X8)++E(Xn)

对于每一个 X i X_i Xi其取值只能是 0 0 0 1 1 1,并且:

P { X = 1 } = 7 ! ∏ i = 1 7 a i N − i + 1 P\{X = 1\} = 7! \prod_{i = 1}^{7}\frac{a_i}{N-i+1} P{X=1}=7!i=17Ni+1ai

简单证明即可。

因此答案就是 E ( X ) = ( N − 6 ) P E(X)=(N-6)P E(X)=(N6)P

#include <bits/stdc++.h>

using namespace std;

typedef unsigned long long ll;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out.txt", "w", stdout)

int main()
{
    ll a, b, c, d, e, f, g;
    scanf("%lld %lld %lld %lld %lld %lld %lld", &a, &b, &c, &d, &e, &f, &g);
    ll sum = a + b + c + d + e + f + g;
    double P = 5040.0 * a / sum * b / (sum - 1) * c / (sum - 2) * d / (sum - 3) * e / (sum - 4) * f / (sum - 5) * g;
    printf("%.3lf", P);
    return 0;
}

P1654

分解期望+线性递推。

#include <bits/stdc++.h>

using namespace std;

typedef unsigned long long ll;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out.txt", "w", stdout)

double p[100005];
double e3[100005];
double e2[100005];
double e1[100005];
double e0[100005];
double e[100005];

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
        scanf("%lf", p + i);
    for (int i = 1; i <= n; i++)
    {
        e[i] = e3[i - 1] * p[i] * (1 - p[i + 1]) +
               3 * e2[i - 1] * p[i] * (1 - p[i + 1]) +
               3 * e1[i - 1] * p[i] * (1 - p[i + 1]) +
               e0[i - 1] * p[i] * (1 - p[i + 1]) +
               p[i] * (1 - p[i + 1]) * (1 - p[i - 1]);

        e3[i] = e3[i - 1] * p[i] +
                3 * e2[i - 1] * p[i] +
                3 * e1[i - 1] * p[i] +
                e0[i - 1] * p[i] +
                p[i] * (1 - p[i - 1]);

        e2[i] = e2[i - 1] * p[i] +
                2 * e1[i - 1] * p[i] +
                e0[i - 1] * p[i] +
                p[i] * (1 - p[i - 1]);

        e1[i] = e1[i - 1] * p[i] +
                e0[i - 1] * p[i] +
                p[i] * (1 - p[i - 1]);

        e0[i] = e0[i - 1] * p[i] +
                p[i] * (1 - p[i - 1]);
    }
    double ans = 0;
    for (int i = 1; i <= n; i++)
    {
        ans += e[i];
    }
    printf("%.1lf", ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值