电子技术——CMOS-AB类输出阶
本节我们研究CMOS-AB类输出阶。
经典配置
下图展示了一个经典的CMOS-AB类输出阶:
这个很像BJT+二极管偏置版本的AB类输出阶,在这里二极管偏置变成了
Q
1
Q_1
Q1 和
Q
2
Q_2
Q2 偏置。不想BJT的情况,这里
Q
N
Q_N
QN 无栅极电流,因此偏置电流
I
I
I 完全流过
Q
1
Q_1
Q1 和
Q
2
Q_2
Q2 ,偏置电压
V
G
G
V_{GG}
VGG 是一个和负载电流无关的常量。
我们知道:
I D 1 = I = 1 2 k n ′ ( W / L ) 1 ( V G S 1 − V t n ) 2 I_{D1} = I = \frac{1}{2}k_n'(W/L)_1(V_{GS1} - V_{tn})^2 ID1=I=21kn′(W/L)1(VGS1−Vtn)2
I D 2 = I = 1 2 k p ′ ( W / L ) 2 ( V S G 2 − ∣ V t p ∣ ) 2 I_{D2}= I = \frac{1}{2}k_p'(W/L)_2(V_{SG2} - |V_{tp}|)^2 ID2=I=21kp′(W/L)2(VSG2−∣Vtp∣)2
上述两个式子能够导出:
V G G = V G S 1 + V S G 2 = V t n + ∣ V t p ∣ + 2 I ( 1 k n ′ ( W / L ) 1 + 1 k p ′ ( W / L ) 2 ) V_{GG} = V_{GS1} + V_{SG2} = V_{tn} + |V_{tp}| + \sqrt{2I} (\frac{1}{\sqrt{k_n'(W/L)_1}} + \frac{1}{\sqrt{k_p'(W/L)_2}}) VGG=VGS1+VSG2=Vtn+∣Vtp∣+2I(kn′(W/L)11+kp′(W/L)21)
同样假设此时处在调平电压 v O = 0 v_O = 0 vO=0 的情况下:
V G G = V G S N + V S G P = V t n + ∣ V t p ∣ + 2 I Q ( 1 k n ′ ( W / L ) n + 1 k p ′ ( W / L ) p ) V_{GG} = V_{GSN} + V_{SGP} = V_{tn} + |V_{tp}| + \sqrt{2I_Q} (\frac{1}{\sqrt{k_n'(W/L)_n}} + \frac{1}{\sqrt{k_p'(W/L)_p}}) VGG=VGSN+VSGP=Vtn+∣Vtp∣+2IQ(kn′(W/L)n1+kp′(W/L)p1)
联立能够导出:
I Q = I [ 1 / k n ′ ( W / L ) 1 + 1 / k p ′ ( W / L ) 2 1 / k n ′ ( W / L ) n + 1 / k p ′ ( W / L ) p ] 2 I_Q = I [\frac{1 / \sqrt{k_n'(W/L)_1} + 1 / \sqrt{k_p'(W/L)_2}}{1 / \sqrt{k_n'(W/L)_n} + 1 / \sqrt{k_p'(W/L)_p}}]^2 IQ=I[1/kn′(W/L)n+1/kp′(W/L)p1/kn′(W/L)1+1/kp′(W/L)2]2
这表明偏置电流 I Q I_Q IQ 和电流源 I I I 的关系只和MOS管的宽长比有关,对于完全匹配的MOS,即 k p ′ ( W / L ) 2 = k n ′ ( W / L ) 1 k_p'(W/L)_2 = k_n'(W/L)_1 kp′(W/L)2=kn′(W/L)1 和 k p ′ ( W / L ) p = k n ′ ( W / L ) n k_p'(W/L)_p = k_n'(W/L)_n kp′(W/L)p=kn′(W/L)n 有:
I Q = I ( W / L ) n ( W / L ) 1 I_Q = I\frac{(W/L)_n}{(W/L)_1} IQ=I(W/L)1(W/L)n
这个方法存在一个缺点,就是限制输出电压的压摆范围,我们假设电流源的压降为 V V V ,我们有:
v O = V D D − V − v G S N v_O = V_{DD} - V - v_{GSN} vO=VDD−V−vGSN
则最大输出电压是当电流源保持最小压降的时候:
v O m a x = V D D − V m i n − v G S N v_{Omax} = V_{DD} - V_{min} - v_{GSN} vOmax=VDD−Vmin−vGSN
当 v O v_O vO 达到最大值的时候,此时 i L i_L iL 达到最大值,所有的负载电流都由 Q N Q_N QN 提供,此时 v G S N v_{GSN} vGSN 也达到最大值。
v O m a x = V D D − V m i n − V t n − V O V N v_{Omax} = V_{DD} - V_{min} - V_{tn} - V_{OVN} vOmax=VDD−Vmin−Vtn−VOVN
这里的 V O V N V_{OVN} VOVN 是当 Q N Q_N QN 通过最大电流 i L i_L iL 时候的过驱动电压。
同样的对于负半周期的最小输出电压为:
v O m i n = − V S S + V m i n ′ + ∣ V t p ∣ + ∣ v O V P ∣ v_{Omin} = -V_{SS} + V'_{min} + |V_{tp}| + |v_{OVP}| vOmin=−VSS+Vmin′+∣Vtp∣+∣vOVP∣
不同的是这里的 V m i n ′ V'_{min} Vmin′ 指的是信号源 v I v_I vI 对 − V S S -V_{SS} −VSS 的最小压降。
我们发现,MOS推挽结构的压摆范围主要收到 V O V N V_{OVN} VOVN 和 ∣ v O V P ∣ |v_{OVP}| ∣vOVP∣ 限制,因此最大负载电流越大,压摆范围就越小。因为BJT的压降基本保持在 0.7 V 0.7V 0.7V 左右,因此不受到这个因素的影响,而对于MOS来说,过驱动电压的范围通常变化比较大,我们可以控制MOS的宽长比来限制过驱动电压的最大值,但是对于大型MOS器件来说是不实际的。
使用共源晶体管的另一种替代方案
下面是使用共源晶体管的一种MOS推挽方案:
上图中,两个推挽MOS管是共源配置,输入端由两个运算放大器提供驱动,运放和输出电压形成负反馈,根据运放虚短的原理,我们知道
v
O
≃
v
I
v_O \simeq v_I
vO≃vI ,因此我们称运放为 误差放大器 。
为了说明上图中是负反馈,我们假设当 v O v_O vO 升高的时候,此时 Q P Q_P QP 的栅极电压升高, i D P i_{DP} iDP 减小,而 Q N Q_N QN 的栅极电压升高, i D N i_{DN} iDN 增大,那么 i L i_L iL 就要减小,导致 v O v_O vO 减小。因此上图中是负反馈。
并且,我们之前学过,上图是一个串联-并联结构,是一个典型的电压放大器,增益为单位增益,具有较大的输入阻抗和较小的输出阻抗。
为了计算小信号的输出阻抗,我们分别考虑电路的一半,对于上半部分计算 R o u t p R_{outp} Routp 下半部分计算 R o u t n R_{outn} Routn 那么整体的输出阻抗为:
R o u t = R o u t p ∣ ∣ R o u t n R_{out} = R_{outp} || R_{outn} Rout=Routp∣∣Routn
下图是上半部分电路:
其中反馈网络为图 (b) 反馈因子为
β
=
1
\beta = 1
β=1 。
使用系统分析法分析开环增益,如图:
然后施加测试源
v
i
v_i
vi 计算输出
v
o
v_o
vo 我们知道:
A = μ g m p ( r o p ∣ ∣ R L ) A = \mu g_{mp} (r_{op} || R_L) A=μgmp(rop∣∣RL)
其中 g m p g_{mp} gmp 和 r o p r_{op} rop 是 Q P Q_P QP 的小信号参数,可由 Q P Q_P QP 的电流决定,开环输出阻抗为:
R o = R L ∣ ∣ r o p R_o = R_L || r_{op} Ro=RL∣∣rop
则负反馈等效输出阻抗为:
R o f = R o 1 + A β = ( r o p ∣ ∣ R L ) 1 + μ g m p ( r o p ∣ ∣ R L ) R_{of} = \frac{R_o}{1 + A\beta} = \frac{(r_{op} || R_L)}{1 + \mu g_{mp} (r_{op} || R_L)} Rof=1+AβRo=1+μgmp(rop∣∣RL)(rop∣∣RL)
那么输出阻抗为:
R o u t p = 1 / ( 1 R o f − 1 R L ) = r o p ∣ ∣ 1 μ g m p ≃ 1 μ g m p R_{outp} = 1 / (\frac{1}{R_{of}} - \frac{1}{R_L}) = r_{op} || \frac{1}{\mu g_{mp}} \simeq \frac{1}{\mu g_{mp}} Routp=1/(Rof1−RL1)=rop∣∣μgmp1≃μgmp1
可见输出阻抗足够小,对于下半部分电路同样的:
R o u t n ≃ 1 μ g m n R_{outn} \simeq \frac{1}{\mu g_{mn}} Routn≃μgmn1
则总输出阻抗为:
R o u t ≃ 1 μ ( g m p + g m n ) R_{out} \simeq \frac{1}{\mu (g_{mp} + g_{mn})} Rout≃μ(gmp+gmn)1
接下来,我们推导其传导特性,我们使用下面的电路图:
首先我们考虑其静态点参数,对于
v
I
=
0
v_I = 0
vI=0 此时
v
O
=
0
v_O = 0
vO=0 。此时偏置电流
I
Q
I_Q
IQ 将完全由电路的静态点误差决定:
I Q = 1 2 k p ′ ( W / L ) p V O V 2 = 1 2 k n ′ ( W / L ) n V O V 2 I_Q = \frac{1}{2} k_p'(W/L)_p V_{OV}^2 = \frac{1}{2} k_n'(W/L)_n V_{OV}^2 IQ=21kp′(W/L)pVOV2=21kn′(W/L)nVOV2
这里的 V O V 2 V_{OV}^2 VOV2 是静态点的过驱动电压,若两个MOS完全匹配:
I Q = 1 2 k V O V 2 I_Q = \frac{1}{2}k V_{OV}^2 IQ=21kVOV2
接下来考虑应用输入信号电压 v I v_I vI ,如下图:
此时两个误差放大器的输出增加了输入输出误差
μ
(
v
O
−
v
I
)
\mu(v_O - v_I)
μ(vO−vI) ,则此时:
i D P = 1 2 k [ V O V − μ ( v O − v I ) ] 2 = I Q ( 1 − μ v O − v I V O V ) 2 i_{DP} = \frac{1}{2}k[V_{OV} - \mu(v_O - v_I)]^2 = I_Q (1 - \mu\frac{v_O - v_I}{V_{OV}})^2 iDP=21k[VOV−μ(vO−vI)]2=IQ(1−μVOVvO−vI)2
i D N = I Q ( 1 + μ v O − v I V O V ) 2 i_{DN} =I_Q (1 + \mu\frac{v_O - v_I}{V_{OV}})^2 iDN=IQ(1+μVOVvO−vI)2
则信号电流为:
i L = i D P − i D N i_L = i_{DP} - i_{DN} iL=iDP−iDN
带入 i L = v O / R L i_L = v_O / R_L iL=vO/RL 得到:
v O = v I 1 + V O V 4 μ I Q R L v_O = \frac{v_I}{1 + \frac{V_{OV}}{4 \mu I_Q R_L}} vO=1+4μIQRLVOVvI
又因为 V O V 4 μ I Q R L ≪ 1 \frac{V_{OV}}{4 \mu I_Q R_L} \ll 1 4μIQRLVOV≪1 近似为:
v O ≃ v I ( 1 − V O V 4 μ I Q R L ) v_O \simeq v_I(1 - \frac{V_{OV}}{4 \mu I_Q R_L}) vO≃vI(1−4μIQRLVOV)
增益误差定义为:
E ≡ v O v I − 1 = − V O V 4 μ I Q R L E \equiv \frac{v_O}{v_I} - 1 = -\frac{V_{OV}}{4 \mu I_Q R_L} E≡vIvO−1=−4μIQRLVOV
因为在静态点处 g m p = g m n = g m = 2 I Q V O V g_{mp} = g_{mn} = g_m = \frac{2I_Q}{V_{OV}} gmp=gmn=gm=VOV2IQ 也可以表示为:
E = − 1 2 μ g m R L E = -\frac{1}{2 \mu g_m R_L} E=−2μgmRL1
因此选择较大的 μ \mu μ 可以降低输入输出误差,以及降低输出阻抗。然而较大的 μ \mu μ 会让 I Q I_Q IQ 过于依赖运放的输入偏移电压。一般,通常让 μ \mu μ 在5到10的范围内。同时,较大的 I Q I_Q IQ 会减小交越失真,输出阻抗和误差,但是会引起较大的静态耗散功率。
书中没给出 I Q I_Q IQ 的计算方法,故在此给出,假设静态输出电压为 V O V_O VO ,那么有:
I Q = 1 2 k p ( V D D − μ V O − ∣ V t p ∣ ) 2 I_Q = \frac{1}{2}k_p(V_{DD} - \mu V_O - |V_{tp}|)^2 IQ=21kp(VDD−μVO−∣Vtp∣)2
I Q = 1 2 k n ( V S S + μ V O − V t n ) 2 I_Q = \frac{1}{2}k_n(V_{SS} + \mu V_O - V_{tn})^2 IQ=21kn(VSS+μVO−Vtn)2
两个式子联立可以解得 I Q I_Q IQ 和 V O V_O VO 的值:
V O = k p ( V D D − ∣ V t p ∣ ) − k n ( V S S − V t n ) μ ( k p + k n ) V_O = \frac{\sqrt{k_p}(V_{DD} - |V_{tp}|) - \sqrt{k_n}(V_{SS} - V_{tn})}{\mu (\sqrt{k_p} + \sqrt{k_n})} VO=μ(kp+kn)kp(VDD−∣Vtp∣)−kn(VSS−Vtn)
我们发现 I Q I_Q IQ 理论上是与 μ \mu μ 无关量,调整MOS参数即可调整 I Q I_Q IQ 。