课程内容
概率图模型的表示刻画了模型的随机变量在变量层面的依赖关系, 反映出问题的概率结构以及推理的难易程度, 也为推理算法提供了可以操作的数据结构. 概率图模型的表示方法有多种比如常见贝叶斯网络、马尔可夫网络、因子图等.
Stanford 教授 Daphne Koller 的公开课 Probabilistic Graphical Model 可在 Coursera 上学习,并且配有编程作业. 该课程主要包括了1:
- 贝叶斯网络及马尔可夫网络的概率图模型表示及变形。
- Reasoning 及 Inference 方法,包括exact inference(variable elimination, clique trees) 和 approximate inference (belief propagation message passing, Markov chain Monte Carlo methods)。
- 概率图模型中参数及结构的learning方法。
- 使用概率图模型进行统计决策建模。
课程资源
-
Coursera-Stanford-PGM 课程视频,提取码:dnva;
-
Coursera-Stanford-PGM 课程幻灯片slides,提取码:ogui;
-
Daphne Koller 教授的著作Probabilistic Graphical Models - Principles and Techniques,以及这本书王飞跃,韩素青的翻译版概率图模型 - 原理与技术;
-
An Introduction to Probabilistic Graphical Models - Jordan是一本不错的书籍,比Koller那本的厚度可是要轻量级不少;
-
至于编程作业代码答案,csdn的资源库和github上均有,但是这个不该作为资源来分享……希望大家还是努力自己完成~自己走一遍才是真正的理解。
概率图模型综述
-
【综述】(MIT博士)林达华老师-”概率模型与计算机视觉” , 讲透了概率图模型的历史和未来发展方向。以及这篇文章排版润色之后.
-
Freemind 的博文 Probabilistic Graphical Model.
-
心怀畏惧 的博文 概率图模型简介 .
我的笔记目录页
- 概率图模型(01): 概述 & 三种分布 (边缘 & 联合 & 条件)
- 概率图模型(02)上: 贝叶斯网中独立关系(因子分解 & 影响流动)
- 概率图模型(02)下: 贝叶斯网两等价观点(条件独立和因子分解)
- 概率图模型(03): 模板模型(动态贝叶斯, 隐马尔可夫和 Plate 模型)
- 概率图模型(05): 揭示局部概率结构, 稀疏化网络表示(Structured-CPDs)
- 概率图模型(06): 概率图双重对偶视角 || 马尔可夫网 & 条件随机场及应用
- 概率图模型(07): 从思路到模型(Knowledge Engineering)
Mark几篇博文
-
总结性极强的干货课程笔记目录页,适合学完课程后整理复习和理解框架使用。
-
Stanford概率图模型(Probabilistic Graphical Model)— 第一讲 贝叶斯网络基础
Stanford概率图模型(Probabilistic Graphical Model)— 第二讲 Template Models and Structured CPDs -
概率图模型(PGM)学习笔记(三)模式推断与概率图流
概率图模型(PGM)学习笔记(四)贝叶斯网络-伯努利贝叶斯-多项式贝叶斯
- yangliuy, Stanford概率图模型(Probabilistic Graphical Model)— 第一讲 贝叶斯网络基础, http://blog.csdn.net/yangliuy/article/details/8067261. ↩
本文转自:http://blog.csdn.net/thither_shore/article/details/52185758