linux服务器上部署DeepSeek指南

1、准备云服务器:

因为DeepSeek对云服务器资源较高,这里就选择了带GPU的云服务器。

这里实验用的是华为云ECS服务器,规格配置如下:

购买完成ECS云服务器之后,通过EIP公网地址登入到ECS云服务器中。

2、部署ollama服务:

Ollama是一个开源工具,用于在本地轻松运行和部署大型语言模型

1.下载install.sh文件:

在/root目录下,新建一个install.sh文件,文本编辑器编辑,写入以下内容:

#!/bin/sh
# This script installs Ollama on Linux.
# It detects the current operating system architecture and installs the appropriate version of Ollama.
 
set -eu
 
 
status() { echo ">>> $*" >&2; }
error() { echo "ERROR $*"; exit 1; }
warning() { echo "WARNING: $*"; }
 
TEMP_DIR=$(mktemp -d)
cleanup() { rm -rf $TEMP_DIR; }
trap cleanup EXIT
 
available() { command -v $1 >/dev/null; }
require() {
    local MISSING=''
    for TOOL in $*; do
        if ! available $TOOL; then
            MISSING="$MISSING $TOOL"
        fi
    done
 
    echo $MISSING
}
 
[ "$(uname -s)" = "Linux" ] || error 'This script is intended to run on Linux only.'
 
ARCH=$(uname -m)
case "$ARCH" in
    x86_64) ARCH="amd64" ;;
    aarch64|arm64) ARCH="arm64" ;;
    *) error "Unsupported architecture: $ARCH" ;;
esac
 
IS_WSL2=false
 
KERN=$(uname -r)
case "$KERN" in
    *icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;;
    *icrosoft) error "Microsoft WSL1 is not currently supported. Please use WSL2 with 'wsl --set-version <distro> 2'" ;;
    *) ;;
esac

VER_PARAM="${OLLAMA_VERSION:+?version=$OLLAMA_VERSION}"
 
SUDO=
if [ "$(id -u)" -ne 0 ]; then
    # Running as root, no need for sudo
    if ! available sudo; then
        error "This script requires superuser permissions. Please re-run as root."
    fi
 
    SUDO="sudo"
fi
 
NEEDS=$(require curl awk grep sed tee xargs)
if [ -n "$NEEDS" ]; then
    status "ERROR: The following tools are required but missing:"
    for NEED in $NEEDS; do
        echo "  - $NEED"
    done
    exit 1
fi
 
for BINDIR in /usr/local/bin /usr/bin /bin; do
    echo $PATH | grep -q $BINDIR && break || continue
done
OLLAMA_INSTALL_DIR=$(dirname ${BINDIR})
 
status "Installing ollama to $OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR"
#if curl -I --silent --fail --location "https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" >/dev/null ; then
#注释掉以下代码
#    status "Downloading Linux ${ARCH} bundle"
#    curl --fail --show-error --location --progress-bar \
#        "https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
#        $SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
#    BUNDLE=1
#    if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; then
#        status "Making ollama accessible in the PATH in $BINDIR"
#        $SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
#    fi
#else
#    status "Downloading Linux ${ARCH} CLI"
#    curl --fail --show-error --location --progress-bar -o "$TEMP_DIR/ollama"\
#    "https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"
#    $SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $OLLAMA_INSTALL_DIR/ollama
#    BUNDLE=0
#    if [ "$OLLAMA_INSTALL_DIR/ollama" != "$BINDIR/ollama" ] ; then
#        status "Making ollama accessible in the PATH in $BINDIR"
#        $SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
#    fi
#fi
#新增以下代码
LOCAL_OLLAMA_TGZ="./ollama-linux-${ARCH}.tgz${VER_PARAM}"
if [ -f "$LOCAL_OLLAMA_TGZ" ]; then
    status "Installing from local file $LOCAL_OLLAMA_TGZ"
    $SUDO tar -xzf "$LOCAL_OLLAMA_TGZ" -C "$OLLAMA_INSTALL_DIR"
    BUNDLE=1
    if [ ! -e "$BINDIR/ollama" ]; then
        status "Making ollama accessible in the PATH in $BINDIR"
        $SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
    fi
else
    echo "Error: The local file $LOCAL_OLLAMA_TGZ does not exist."
    exit 1
fi
 
 
install_success() {
    status 'The Ollama API is now available at 127.0.0.1:11434.'
    status 'Install complete. Run "ollama" from the command line.'
}
trap install_success EXIT
 
# Everything from this point onwards is optional.
 
configure_systemd() {
    if ! id ollama >/dev/null 2>&1; then
        status "Creating ollama user..."
        $SUDO useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
    fi
    if getent group render >/dev/null 2>&1; then
        status "Adding ollama user to render group..."
        $SUDO usermod -a -G render ollama
    fi
    if getent group video >/dev/null 2>&1; then
        status "Adding ollama user to video group..."
        $SUDO usermod -a -G video ollama
    fi
 
    status "Adding current user to ollama group..."
    $SUDO usermod -a -G ollama $(whoami)
 
    status "Creating ollama systemd service..."
    cat <<EOF | $SUDO tee /etc/systemd/system/ollama.service >/dev/null
[Unit]
Description=Ollama Service
After=network-online.target
 
[Service]
ExecStart=$BINDIR/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"
 
[Install]
WantedBy=default.target
EOF
    SYSTEMCTL_RUNNING="$(systemctl is-system-running || true)"
    case $SYSTEMCTL_RUNNING in
        running|degraded)
            status "Enabling and starting ollama service..."
            $SUDO systemctl daemon-reload
            $SUDO systemctl enable ollama
 
            start_service() { $SUDO systemctl restart ollama; }
            trap start_service EXIT
            ;;
    esac
}
 
if available systemctl; then
    configure_systemd
fi
 
# WSL2 only supports GPUs via nvidia passthrough
# so check for nvidia-smi to determine if GPU is available
if [ "$IS_WSL2" = true ]; then
    if available nvidia-smi && [ -n "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then
        status "Nvidia GPU detected."
    fi
    install_success
    exit 0
fi
 
# Install GPU dependencies on Linux
if ! available lspci && ! available lshw; then
    warning "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies."
    exit 0
fi
 
check_gpu() {
    # Look for devices based on vendor ID for NVIDIA and AMD
    case $1 in
        lspci)
            case $2 in
                nvidia) available lspci && lspci -d '10de:' | grep -q 'NVIDIA' || return 1 ;;
                amdgpu) available lspci && lspci -d '1002:' | grep -q 'AMD' || return 1 ;;
            esac ;;
        lshw)
            case $2 in
                nvidia) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[10DE\]' || return 1 ;;
                amdgpu) available lshw && $SUDO lshw -c display -numeric -disable network | grep -q 'vendor: .* \[1002\]' || return 1 ;;
            esac ;;
        nvidia-smi) available nvidia-smi || return 1 ;;
    esac
}
 
if check_gpu nvidia-smi; then
    status "NVIDIA GPU installed."
    exit 0
fi
 
if ! check_gpu lspci nvidia && ! check_gpu lshw nvidia && ! check_gpu lspci amdgpu && ! check_gpu lshw amdgpu; then
    install_success
    warning "No NVIDIA/AMD GPU detected. Ollama will run in CPU-only mode."
    exit 0
fi
 
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
    if [ $BUNDLE -ne 0 ]; then
        status "Downloading Linux ROCm ${ARCH} bundle"
        curl --fail --show-error --location --progress-bar \
            "https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \
            $SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
 
        install_success
        status "AMD GPU ready."
        exit 0
    fi
    # Look for pre-existing ROCm v6 before downloading the dependencies
    for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do
        if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then
            status "Compatible AMD GPU ROCm library detected at ${search}"
            install_success
            exit 0
        fi
    done
 
    status "Downloading AMD GPU dependencies..."
    $SUDO rm -rf /usr/share/ollama/lib
    $SUDO chmod o+x /usr/share/ollama
    $SUDO install -o ollama -g ollama -m 755 -d /usr/share/ollama/lib/rocm
    curl --fail --show-error --location --progress-bar "https://ollama.com/download/ollama-linux-amd64-rocm.tgz${VER_PARAM}" \
        | $SUDO tar zx --owner ollama --group ollama -C /usr/share/ollama/lib/rocm .
    install_success
    status "AMD GPU ready."
    exit 0
fi
 
CUDA_REPO_ERR_MSG="NVIDIA GPU detected, but your OS and Architecture are not supported by NVIDIA.  Please install the CUDA driver manually https://docs.nvidia.com/cuda/cuda-installation-guide-linux/"
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-7-centos-7
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#rhel-9-rocky-9
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#fedora
install_cuda_driver_yum() {
    status 'Installing NVIDIA repository...'
    
    case $PACKAGE_MANAGER in
        yum)
            $SUDO $PACKAGE_MANAGER -y install yum-utils
            if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo" >/dev/null ; then
                $SUDO $PACKAGE_MANAGER-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo
            else
                error $CUDA_REPO_ERR_MSG
            fi
            ;;
        dnf)
            if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo" >/dev/null ; then
                $SUDO $PACKAGE_MANAGER config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-$1$2.repo
            else
                error $CUDA_REPO_ERR_MSG
            fi
            ;;
    esac
 
    case $1 in
        rhel)
            status 'Installing EPEL repository...'
            # EPEL is required for third-party dependencies such as dkms and libvdpau
            $SUDO $PACKAGE_MANAGER -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$2.noarch.rpm || true
            ;;
    esac
 
    status 'Installing CUDA driver...'
 
    if [ "$1" = 'centos' ] || [ "$1$2" = 'rhel7' ]; then
        $SUDO $PACKAGE_MANAGER -y install nvidia-driver-latest-dkms
    fi
 
    $SUDO $PACKAGE_MANAGER -y install cuda-drivers
}
 
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu
# ref: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#debian
install_cuda_driver_apt() {
    status 'Installing NVIDIA repository...'
    if curl -I --silent --fail --location "https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-keyring_1.1-1_all.deb" >/dev/null ; then
        curl -fsSL -o $TEMP_DIR/cuda-keyring.deb https://developer.download.nvidia.com/compute/cuda/repos/$1$2/$(uname -m | sed -e 's/aarch64/sbsa/')/cuda-keyring_1.1-1_all.deb
    else
        error $CUDA_REPO_ERR_MSG
    fi
 
    case $1 in
        debian)
            status 'Enabling contrib sources...'
            $SUDO sed 's/main/contrib/' < /etc/apt/sources.list | $SUDO tee /etc/apt/sources.list.d/contrib.list > /dev/null
            if [ -f "/etc/apt/sources.list.d/debian.sources" ]; then
                $SUDO sed 's/main/contrib/' < /etc/apt/sources.list.d/debian.sources | $SUDO tee /etc/apt/sources.list.d/contrib.sources > /dev/null
            fi
            ;;
    esac
 
    status 'Installing CUDA driver...'
    $SUDO dpkg -i $TEMP_DIR/cuda-keyring.deb
    $SUDO apt-get update
 
    [ -n "$SUDO" ] && SUDO_E="$SUDO -E" || SUDO_E=
    DEBIAN_FRONTEND=noninteractive $SUDO_E apt-get -y install cuda-drivers -q
}
 
if [ ! -f "/etc/os-release" ]; then
    error "Unknown distribution. Skipping CUDA installation."
fi
 
. /etc/os-release
 
OS_NAME=$ID
OS_VERSION=$VERSION_ID
 
PACKAGE_MANAGER=
for PACKAGE_MANAGER in dnf yum apt-get; do
    if available $PACKAGE_MANAGER; then
        break
    fi
done
 
if [ -z "$PACKAGE_MANAGER" ]; then
    error "Unknown package manager. Skipping CUDA installation."
fi
 
if ! check_gpu nvidia-smi || [ -z "$(nvidia-smi | grep -o "CUDA Version: [0-9]*\.[0-9]*")" ]; then
    case $OS_NAME in
        centos|rhel) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -d '.' -f 1) ;;
        rocky) install_cuda_driver_yum 'rhel' $(echo $OS_VERSION | cut -c1) ;;
        fedora) [ $OS_VERSION -lt '39' ] && install_cuda_driver_yum $OS_NAME $OS_VERSION || install_cuda_driver_yum $OS_NAME '39';;
        amzn) install_cuda_driver_yum 'fedora' '37' ;;
        debian) install_cuda_driver_apt $OS_NAME $OS_VERSION ;;
        ubuntu) install_cuda_driver_apt $OS_NAME $(echo $OS_VERSION | sed 's/\.//') ;;
        *) exit ;;
    esac
fi
 
if ! lsmod | grep -q nvidia || ! lsmod | grep -q nvidia_uvm; then
    KERNEL_RELEASE="$(uname -r)"
    case $OS_NAME in
        rocky) $SUDO $PACKAGE_MANAGER -y install kernel-devel kernel-headers ;;
        centos|rhel|amzn) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE kernel-headers-$KERNEL_RELEASE ;;
        fedora) $SUDO $PACKAGE_MANAGER -y install kernel-devel-$KERNEL_RELEASE ;;
        debian|ubuntu) $SUDO apt-get -y install linux-headers-$KERNEL_RELEASE ;;
        *) exit ;;
    esac
 
    NVIDIA_CUDA_VERSION=$($SUDO dkms status | awk -F: '/added/ { print $1 }')
    if [ -n "$NVIDIA_CUDA_VERSION" ]; then
        $SUDO dkms install $NVIDIA_CUDA_VERSION
    fi
 
    if lsmod | grep -q nouveau; then
        status 'Reboot to complete NVIDIA CUDA driver install.'
        exit 0
    fi
 
    $SUDO modprobe nvidia
    $SUDO modprobe nvidia_uvm
fi
 
# make sure the NVIDIA modules are loaded on boot with nvidia-persistenced
if available nvidia-persistenced; then
    $SUDO touch /etc/modules-load.d/nvidia.conf
    MODULES="nvidia nvidia-uvm"
    for MODULE in $MODULES; do
        if ! grep -qxF "$MODULE" /etc/modules-load.d/nvidia.conf; then
            echo "$MODULE" | $SUDO tee -a /etc/modules-load.d/nvidia.conf > /dev/null
        fi
    done
fi
 
status "NVIDIA GPU ready."
install_success

注:安装脚本不需要做任何的改动。

功能:软件的安装,服务配置,环境变量配置,开机自启动等相关操作。


 2.下载ollama安装包:

这里是直接在官网下载:https://ollama.com/download/ollama-linux-amd64.tgz。


这里在ECS云服务器上直接下载即可,这里需要对eip带宽有一定要求,最好是设置为300M带宽,按照流量进行计费。

# wget https://ollama.com/download/ollama-linux-amd64.tgz

配置install.sh脚本与ollama安装包下载完成之后,如下: 

[root@ecs-a2c5 ~]# ll
total 1642992
-rwxr-xr-x 1 root root      13932 Feb  7 16:38 install.sh
-rw-r--r-- 1 root root 1682401421 Feb 11 16:20 ollama-linux-amd64.tgz

 3.安装ollama服务:

先将install.sh添加可执行权限,然后执行安装。

# chmod +x install.sh
# ./install.sh

结果如下: 

验证安装

安装完成后,在终端输入以下命令,检查Ollama版本:

4.配置ollma服务:

有一些环境变量需要配置,

常用的是监听host、下载路径(因为是离线,用处不大)、多cuda使用。


注:CUDA是由NVIDIA开发的一种并行计算平台和编程模型,它允许开发者使用NVIDIA的GPU进行通用计算任务。

# vim /etc/systemd/system/ollama.service

修改前的参数配置: 

修改后的参数配置: 


添加的参数内容如下:

Environment="OLLAMA_HOST=0.0.0.0:11434"
Environment="CUDA_VISIBLE_DEVICES=3,2"
Environment="OLLAMA_MODELS=/data/ollama/model"

生效配置: 

# systemctl daemon-reload 
# systemctl restart ollama

注:这里会出现一个问题,如果不给OLLAMA_MODELS的文件夹777权限,启动可能可能会失败。

# mkdir -p /data/ollama/model

# chmod 777 /data/ollama/model

 3、下载deepseek模型:

Ollama支持多种DeepSeek模型版本,用户可以根据硬件配置选择合适的模型。以下是部署步骤:

选择模型版本:

  • 入门级:1.5B版本,适合初步测试。
  • 中端:7B或8B版本,适合大多数消费级GPU。
  • 高性能:14B、32B或70B版本,适合高端GPU。

下载deepseek模型命令如下:

7B版本:

# ollama run deepseek-r1:7b

8B版本:

# ollama run deepseek-r1:8b

14B版本:

# ollama run deepseek-r1:14b

32B版本:

# ollama run deepseek-r1:32b

这里下载的是8b版本的

[root@ecs-a2c5 ~]# ollama run deepseek-r1:8b
.......
>>> Send a message (/? for help)

验证一下deepseek模型效果: 

1.启动Ollama服务:

在终端运行以下命令启动Ollama服务:

ollama serve

查看ollama服务进程:

[root@ecs-a2c5 docker]# netstat -anlp | grep ollama
tcp        0      0 127.0.0.1:36351         0.0.0.0:*               LISTEN      10052/ollama_llama_ 
tcp6       0      0 :::11434                :::*                    LISTEN      8765/ollama         
unix  3      [ ]         STREAM     CONNECTED     91957    8765/ollama 

打开浏览器,访问http://localhost:11434,如果页面显示Ollama的界面,则说明安装成功。

4、安装MAXKB问答系统:

MaxKB是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库问答系统。

使用docker方式安装MAXKB问答系统:

  • 先安装docker服务
  • yum install -y docker
  • systemctl restart docker

 1.下载maxKB容器镜像:

这里是我自己下载镜像到自己私库里了,所以可以直接下载。

# docker pull registry.cn-hangzhou.aliyuncs.com/images-speed-up/maxkb:latest

运行本地MaxKB容器服务:

[root@ecs-a2c5 docker]# docker images
REPOSITORY                                                TAG                 IMAGE ID            CREATED             SIZE
registry.cn-hangzhou.aliyuncs.com/images-speed-up/maxkb   latest              56b459f9befb        25 hours ago        3.6GB
[root@ecs-a2c5 docker]# docker run -d --name=maxkb -p 8080:8080 -v /maxkb_data:/var/lib/postgresql/data registry.cn-hangzhou.aliyuncs.com/images-speed-up/maxkb:latest
ee1696017832dc7490537b709a47a2cb9db07d053b24f27f4ed3d010069144d2
[root@ecs-a2c5 docker]# docker ps
CONTAINER ID        IMAGE                                                            COMMAND                  CREATED             STATUS              PORTS                              NAMES
ee1696017832        registry.cn-hangzhou.aliyuncs.com/images-speed-up/maxkb:latest   "bash -c /usr/bin/ru…"   6 seconds ago       Up 5 seconds        5432/tcp, 0.0.0.0:8080->8080/tcp   maxkb

 2.访问MAXKB问答系统:

https://eip:8080/ui/login

  1. 进入MaxKB控制台模型管理 > 添加模型

  2. 填写参数

    • 模型类型:Ollama
    • 模型名称:DeepSeek-r1
    • Base URL:http://ollama主机ip:11434(Docker内访问宿主机)
    • 模型名称:deepseek-r1(与Ollama拉取的模型名一致)

3. 创建应用并测试问答功能

 

到此,ollamam+deepseek+maxkb部署完成,后面就可以体验了。 

### 如何在服务器部署 DeepSeek #### 准备工作环境 为了成功安装并运行 DeepSeek,在服务器环境中需准备必要的软件包和依赖项。对于基于 CentOS 的操作系统,建议更新现有系统包至最新版本[^1]。 ```bash sudo yum update -y ``` #### 安装基础工具和服务 确保已安装 Git 和其他开发工具链来获取项目源码以及编译所需资源。可以通过 YUM 组包管理器快速完成这些设置: ```bash sudo yum groupinstall "Development Tools" -y sudo yum install python3-pip -y ``` #### 获取 DeepSeek 代码库 从 GitHub 上克隆官方仓库 `DeepSeek-V2` 到本地文件夹内以便进一步处理和配置[^2]: ```bash git clone https://github.com/deepseek-ai/DeepSeek-V2.git cd DeepSeek-V2 ``` #### 配置虚拟环境与 Python 库 创建独立的 Python 虚拟环境用于隔离不同项目的依赖关系,并激活该环境;之后利用 pip 工具安装由项目定义好的 Python 包集合: ```bash python3 -m venv ./venv source ./venv/bin/activate pip install --upgrade pip setuptools wheel pip install -r requirements.txt ``` #### 设置硬件加速支持 (可选) 如果计划使用特定硬件如华为昇腾 NPU 来提升性能,则需要额外集成相应的驱动程序和支持库以实现最佳效果。 #### 启动服务端应用 最后一步是启动应用程序本身。这通常涉及到执行某个脚本或命令行指令来初始化 Web API 或者 CLI 接口供外部访问。具体方式取决于所使用的框架和技术栈,可能涉及 Flask/Django/Gunicorn 等组件的选择。 ```bash python app.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jiang0615csdn

你对鼓励是我最大的动力来源

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值