LSTM与文本生成

当使用Python和Keras构建LSTM模型时,可以按照以下步骤进行简单的文本生成:

  1. 准备数据集:
  • 首先,将文本数据集进行预处理,例如分词、去除标点符号、将文本转换为小写等。
  • 创建一个词汇表,将每个唯一的单词映射到一个整数值,以便进行向量化。
  • 将文本序列划分为输入序列和目标序列。例如,对于句子 “I love AI”,输入序列是 “I love”,目标序列是 “AI”。
  1. 构建LSTM模型:
  • 导入必要的库,如Keras和NumPy。
  • 创建一个Sequential模型,用于堆叠LSTM层。
  • 添加一个Embedding层,用于将整数值的单词映射为密集向量表示。
  • 添加一个或多个LSTM层,指定隐藏状态的维度和其他参数。
  • 添加一个全连接层,将LSTM层的输出映射到词汇表中的单词数量。
  • 编译模型并指定损失函数和优化器。
  1. 训练模型:
  • 使用输入序列和目标序列训练LSTM模型。可以使用Keras的fit()函数来完成。
    -选择适当的训练参数,如批量大小、迭代次数等。

4.生成文本:

  • 使用训练完成的LSTM模型来生成新的文本。
  • 提供一个起始文本序列作为输入,使用模型预测下一个单词。
  • 将预测的单词添加到序列中,并继续进行预测,直到达到所需的文本长度或结束标记。

以下是一个简单的代码示例:

tokens = text.lower().split()
vocab = sorted(list(set(tokens)))
word_to_int = dict((w, i) for i, w in enumerate(vocab))
int_to_word = dict((i, w) for i, w in enumerate(vocab))
seq_length =2data = []
for i in range(len(tokens) - seq_length):
 seq_in = tokens[i:i+seq_length]
 seq_out = tokens[i+seq_length]
 data.append((seq_in, seq_out))

# 向量化数据X = np.zeros((len(data), seq_length))
y = np.zeros(len(data))
for i, (seq_in, seq_out) in enumerate(data):
 X[i] = [word_to_int[word] for word in seq_in]
 y[i] = word_to_int[seq_out]

# 构建LSTM模型vocab_size = len(vocab)
embedding_dim =10hidden_units =32model = Sequential()
model.add(Embedding(vocab_size, embedding_dim, input_length=seq_length))
model.add(LSTM(hidden_units))
model.add(Dense(vocab_size, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')

# 训练模型model.fit(X, y, epochs=100, batch_size=1)

#生成文本start_seq = "I love"
generated_text = start_seqnum_words =5for _ in range(num_words):
 seq = [word_to_int[word] for word in start_seq.lower().split()]
 seq = np.array(seq).reshape(1, seq_length)
 prediction = model.predict(seq)
 next_word = int_to_word[np.argmax(prediction)]
 generated_text += " " + next_word start_seq += " " + next_wordprint(generated_text)

这个例子中,我们首先准备了一个简单的文本数据集,然后使用LSTM模型对其进行训练,并使用训练好的模型生成新的文本。请注意,这只是一个简单的示例,实际应用中可能需要更复杂的模型和更大的数据集来获得更好的结果。

以下是使用PyTorch的代码示例,详细说明了如何构建和训练LSTM模型以生成文本。

首先,我们需要导入必要的库:

pythonimport torchimport torch.nn as nnimport numpy as np

接下来,我们定义一个LSTM模型类:

 def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers):
 super(LSTMModel, self).__init__()
 self.embedding = nn.Embedding(vocab_size, embedding_dim)
 self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
 self.fc = nn.Linear(hidden_dim, vocab_size)

 def forward(self, x, hidden):
 embedded = self.embedding(x)
 output, hidden = self.lstm(embedded, hidden)
 output = self.fc(output)
 return output, hidden```

接下来,我们定义一些辅助函数来处理文本数据:

```pythondef tokenize_text(text):
 tokens = text.lower().split()
 return tokensdef create_vocab(tokens):
 vocab = sorted(list(set(tokens)))
 word_to_int = dict((w, i) for i, w in enumerate(vocab))
 int_to_word = dict((i, w) for i, w in enumerate(vocab))
 return vocab, word_to_int, int_to_worddef create_dataset(tokens, seq_length):
 data = []
 for i in range(len(tokens) - seq_length):
 seq_in = tokens[i:i+seq_length]
 seq_out = tokens[i+seq_length]
 data.append((seq_in, seq_out))
 return datadef vectorize_data(data, word_to_int):
 X = []
 y = []
 for seq_in, seq_out in data:
 X.append([word_to_int[word] for word in seq_in])
 y.append(word_to_int[seq_out])
 return X, y```

然后,我们定义一些超参数和训练过程:

```python# 超参数embedding_dim =10hidden_dim =32num_layers =1num_epochs =100batch_size =1learning_rate =0.001# 文本数据text = "I love AI"
seq_length =2# 数据预处理tokens = tokenize_text(text)
vocab, word_to_int, int_to_word = create_vocab(tokens)
data = create_dataset(tokens, seq_length)
X, y = vectorize_data(data, word_to_int)

# 转换为TensorX = torch.tensor(X)
y = torch.tensor(y)

# 创建模型和优化器vocab_size = len(vocab)
model = LSTMModel(vocab_size, embedding_dim, hidden_dim, num_layers)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()

# 训练模型for epoch in range(num_epochs):
 model.train()
 hidden = (torch.zeros(num_layers, batch_size, hidden_dim),
 torch.zeros(num_layers, batch_size, hidden_dim))
 outputs, hidden = model(X, hidden)
 loss = criterion(outputs.view(-1, vocab_size), y.view(-1))
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 if (epoch+1) %10 ==0:
 print(f"Epoch: {epoch+1}/{num_epochs}, Loss: {loss.item()}")

#生成文本start_seq = "I love"
num_words =5generated_text = start_seq.split()
hidden = (torch.zeros(num_layers,1, hidden_dim),
 torch.zeros(num_layers,1, hidden_dim))

model.eval()
for _ in range(num_words):
 input_seq = torch.tensor([[word_to_int[word] for word in generated_text[-seq_length:]]])
 output, hidden = model(input_seq, hidden)
 _, predicted = torch.max(output, dim=2)
 next_word = int_to_word[predicted.item()]
 generated_text.append(next_word)

print("Generated Text:", " ".join(generated_text))

这个代码示例中,我们首先进行了数据预处理和向量化,然后定义了一个LSTM模型类。接着我们进行了模型的训练,并使用训练好的模型生成新的文本。

tokens = text.lower().split()
vocab = sorted(list(set(tokens)))
word_to_int = {w: i for i, w in enumerate(vocab)}
int_to_word = {i: w for i, w in enumerate(vocab)}
seq_length =2data = []
for i in range(len(tokens) - seq_length):
 seq_in = tokens[i:i + seq_length]
 seq_out = tokens[i + seq_length]
 data.append((seq_in, seq_out))

# 构建训练数据X = np.zeros((len(data), seq_length))
y = np.zeros(len(data))
for i, (seq_in, seq_out) in enumerate(data):
 X[i] = [word_to_int[word] for word in seq_in]
 y[i] = word_to_int[seq_out]

# 转换为TensorX = torch.tensor(X, dtype=torch.long)
y = torch.tensor(y, dtype=torch.long)

# LSTM模型class LSTMModel(nn.Module):
 def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers):
 super(LSTMModel, self).__init__()
 self.embedding = nn.Embedding(vocab_size, embedding_dim)
 self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True)
 self.fc = nn.Linear(hidden_dim, vocab_size)

 def forward(self, x):
 embedded = self.embedding(x)
 output, _ = self.lstm(embedded)
 output = self.fc(output[:, -1, :])
 return output# 定义超参数vocab_size = len(vocab)
embedding_dim =10hidden_dim =32num_layers =1num_epochs =100batch_size =1learning_rate =0.001# 创建模型和优化器model = LSTMModel(vocab_size, embedding_dim, hidden_dim, num_layers)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()

# 训练模型for epoch in range(num_epochs):
 model.train()
 optimizer.zero_grad()
 outputs = model(X)
 loss = criterion(outputs.view(-1, vocab_size), y.view(-1))
 loss.backward()
 optimizer.step()

 if (epoch+1) %10 ==0:
 print(f"Epoch: {epoch+1}/{num_epochs}, Loss: {loss.item()}")

#生成文本start_seq = "I love"
num_words =5generated_text = start_seq.split()
model.eval()
with torch.no_grad():
 for _ in range(num_words):
 input_seq = torch.tensor([[word_to_int[word] for word in generated_text[-seq_length:]]], dtype=torch.long)
 output = model(input_seq)
 _, predicted = torch.max(output, dim=2)
 next_word = int_to_word[predicted.item()]
 generated_text.append(next_word)

print("Generated Text:", " ".join(generated_text))

在PyTorch中实现LSTM文本生成的代码示例中,我们首先进行了数据预处理步骤,包括将原始文本转换为小写并分割为单词。然后,我们创建了一个词汇表,并将每个单词映射到一个整数值,以便进行向量化。

接下来,我们构建了一个LSTM模型。该模型包括一个嵌入层(Embedding layer),用于将整数值的单词映射为密集向量表示。然后,我们使用一个或多个LSTM层来捕捉文本序列的上下文信息。最后,我们添加一个全连接层,将LSTM层的输出映射到词汇表中的单词数量,并使用softmax激活函数进行分类。

在训练阶段,我们使用交叉熵损失函数来衡量模型的输出与真实标签之间的差异,并使用Adam优化器来更新模型的参数。我们迭代了多个时期(epochs),在每个时期中,我们将训练数据输入到模型中,并计算损失值。然后,我们通过反向传播和梯度下降来更新模型的参数,以最小化损失函数。

最后,我们使用训练好的模型来生成新的文本。我们提供一个起始文本序列作为输入,并使用模型预测下一个单词。然后,将预测的单词添加到序列中,并继续进行预测,直到达到所需的文本长度或结束标记。

这个代码示例提供了LSTM文本生成的一个基本框架

  • 8
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
课程导语:    人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。 从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。 讲师简介:赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚新南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器学习、深度学习方向满分级精英讲师。授课风格逻辑严谨、条理清晰、循序渐进、循循善诱,化枯燥为如沐春风,所教学生人数过万。 课程设计: 本课程分为5大模块,19小节,共计540时长(约9小时): 第一部分,课程介绍、目标与内容概览。主要学习人工智能深度学习应用场景;熟悉深度学习主流技术;掌握使用keras解决深度学习主要问题(神经网络、卷积神经网络、循环神经网络),以及深度学习主要内容:神经网络、卷积神经网络、循环神经网络;案例简介。 第二部分,深度学习之多层感知器(MLP)。主要学习多层感知器(MLP);MLP实现非线性分类;深度学习实战准备;Python调用keras实现MLP。 MLP技术点实战案例:第三部分,深度学习之卷积神经网络(CNN)。主要学习卷积神经网络 ; CNN模型分析;主流CNN模型; Python调用keras实现CNN; CNN技术点实战案例:第四部分,深度学习之循环神经网络(RNN)。主要学习循环神经网络;RNN模型分析;Python调用keras实现RNN。 RNN技术点实战案例: 第五部分,综合提升。主要进行迁移学习;混合模型;实战准备+综合实战,以及最后进行课程内容总结。 混合模型技术点实战案例

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值