统计学习基础练习(Exercises for Overview of Supervised Learning)2

Exercises for Overview of Supervised Learning

Ex.2.1 假设 K K -类,每一类都有一个相关联的目标tk tk t k 是一个第 k k 个位置等于1,所有位置都是0的向量。如果y^中元素和为1,证明对 y^ y ^ 中最大元素进行分类等价于计算最接近的目标 minktky^ min k ‖ t k − y ^ ‖

证明:假设 y^=(y1,y2,,yK) y ^ = ( y 1 , y 2 , … , y K ) minktky^ min k ‖ t k − y ^ ‖ 等价于 minktky^22 min k ‖ t k − y ^ ‖ 2 2
不防假设 y^ y ^ 属于第1类 ,也就是说 y1yii{1,2,,K} y 1 ≥ y i ∀ i ∈ { 1 , 2 , … , K }
2y1+12yi+1i{1,2,,K}tyt2y1+1tyt2yi+1t1y^tiy^i{1,2,,K} ⟺ − 2 y 1 + 1 ≤ − 2 y i + 1 ∀ i ∈ { 1 , 2 , … , K } ⟺ ∑ t y t − 2 y 1 + 1 ≤ ∑ t y t − 2 y i + 1 ⟺ ‖ t 1 − y ^ ‖ ≤ ‖ t i − y ^ ‖ ∀ i ∈ { 1 , 2 , … , K }

Ex.2.2 如何计算Figure 2.5中模拟示例的Bayes决策边界
参考网友
Ex.2.3 推导等式:均匀分布在 p p 维单位球内的N个点,其中到圆心距离最近点的距离的中位数是

d(p,N)=(1121N)1p d ( p , N ) = ( 1 − 1 2 1 N ) 1 p

首先,我们解释一下距离的中位数。假设距离的中位数是 d d ,也就是说距离比d大的和比 d d 小的概率一样。
我们知道 Rp中半径为 r r 的球体积是ωprp,其中

ωp=πp2p2! ω p = π p 2 p 2 !

因为单位球中每一点都是等概率的,那么任取一点,它到原点的距离小于 x x 的概率是半径为x球的体积除以单位球的体积,因此我们可以的得到CDF(累计密度函数,Cumulative Distribution Function):
F(x)=xp,  0x1. F ( x ) = x p ,     0 ≤ x ≤ 1.

那么相应的导数就是概率密度函数(PDF probability density function):
f(x)=pxp1 f ( x ) = p x p − 1

假设我们随机选取 N N 个点{y1,y2,,yN},如果其中最小的一个点等于 y y ,也就是说其中有N1个点不小于 y y ,其概率是N(1F(y))N1,在此基础上,最小一个点是 y y 的概率密度函数是
g(y)=N(1yp)N1pyp1

对此概率密度函数(PDF)进行积分就可以得到累计密度函数(CDF)
G(y)=1(1yp)N G ( y ) = 1 − ( 1 − y p ) N

G(y)=0.5 G ( y ) = 0.5 就可以得到随机取 N N 个点,到圆心最近点距离中位数了。

Ex2.4讨论的边沿影响问题不是有界域均匀抽样独有的。考虑取自球形多项分布XN(0,Ip)的输入。从任意样本点到原点的平方距离服从具有均值 p p χp2分布。考虑取自该分布的预测点 x0 x 0 。并设, a=x0x0 a = x 0 ‖ x 0 ‖ 是一个相关的单位向量 zi=aTxi z i = a T x i 为每个训练点在该方向上的投影。
(a)证明 zi z i 分布在 N(0,1) N ( 0 , 1 ) 上,具有到原点的期望平方距离 1 1 ,而目标点具有到原点的期望平方距离p
(b)对于 p=10 p = 10 ,证明从训练数据的中心到检验点的期望距离是 3.1 3.1 倍标准差,而所有训练点沿方向a具有期望距离 1 1 。从而,大部分预测点位于训练集的边沿。

Ex2.5(a)推导等式(2.27)

EPE(x0)=Ey0|x0E(y0y^0)2=Var(y0|x0)+E[y^0Ey^0]2+[Ey^0x0Tx0Tβ]=Var(y0|x0)+Var(y^0)+Bias2(y^0)=σ2+Ex0T(XTX)1x0σ2+02

(b)推导等式(2.28)

Ex0Ex0xT0Cov(X)1x0σ2N+σ2=trace[Cov(X)1Cov(x0)]σ2N+σ2=σ2pN+σ2 E x 0 ∼ E x 0 x 0 T C o v ( X ) − 1 x 0 σ 2 N + σ 2 = t r a c e [ C o v ( X ) − 1 C o v ( x 0 ) ] σ 2 N + σ 2 = σ 2 p N + σ 2

证明:对于(a),这个是一个经典的分解,
expectedloss=bias2+variance+noise e x p e c t e d l o s s = b i a s 2 + v a r i a n c e + n o i s e ,网上很多,具体证明看网友的吧
对于(b)

Ex. 2.6

Ex. 2.7

Ex. 2.8

Ex. 2.9

end

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值