高等概率论(10月12日)
有界收敛定理
设 μ(E)<∞ , supp(fn)⊂E,fn↦mf,|fn(x)|≤M a.e. {x∈Ec:|f(x)>ϵ|}⊂{x∈Ec:|f(x)−fn|>ϵ/2}⋃{x∈Ec:|fn(x)|>ϵ/2}
期望的性质
(Ω,F,P)
随机变量
X
当
期望的性质: 设
X,Y>0
或
E(X),E(Y)<∞
其他重要性质,如Jensen,Holder不等式,Fatou引理,单调收敛与控制收敛定理.
记号 E(X;A)=∫AXdP , A∈F
定理1.5.6:
设
φ:R↦[0,∞)
可测,
A∈F
,记
iA=inf{φ(y):y∈A}
则
分析:
取期望,特例 φ(X)=X2,A={X∈R:|X|≥a}a>0⇒E(X2)≥a2P(|X|≥a) (Chebyshev不等式)
⇔P(|X|≥a)≤E(X2)a2
例1.5.2
φ:R↦[0,M] , a∈[0,M] , P(φ(X)≥a)
令 A={φ(X)≥a} , φ(X)=φ(X)|A+φ(X)|Ac≤M|A+a|Ac
取期望 E(φ(X))≤MP(φ(X)≥a)+a(1−P(φ(X)≥a)
⇒P(φ(X)≥a)≥E(φ(X))−aM−a
(Ω,F,P),(S,S),X:Ω↦S 可测
X
可诱导上
定理1.5.7(佚名统计学家公式)
设 X:Ω↦S 可测,有分布 μ ,又设 f:S↦R 可测,且 f≥0 或 E(|f(X)|)<∞ ,则
E(f(X))=∫Sf(y)μ(dy)
分析:四部曲
step 1: 示性函数 B∈S,f=1B
>E(f(X))=P(X∈B)=μ(B)=∫S1B(y)μ(dy)>
step 2: 简单函数 f=∑nk=1ck1Bk , Bk∈S
>E(f(X))=∑kckE(1Bk(X))=∑kck∫S1B(y)μ(dy)=∫Sf(y)μ(dy)>
step 3: 非负 f≥0 令
>fn(X)=(2−n[2nf(X)])∧n,则fn↑f>
由单调收敛
>E(f(X))=limn↦∞E(fn(X))=limn↦∞∫Sfn(y)μ(dy)=∫Sf(y)μ(dy)>
step 4: 可积 f(X)=f+(X)−f−(X) , E(f(X))=E(f+(X))−E(f−(X))=∫Sf+(y)μ(dy)−∫Sf−(y)μ(dy)=∫Sf(y)μ(dy)
例1.5.3
X∼N(0,1) ,密度 ϕ(X)=12πe−12x2 , x∈(−∞,∞)
(1)令 H0=1 定义 (−1)nHn(X)ϕ(X)=ϕ(n)(X) , 证明 Hn(X)=xn+…
(2) E(Hm(X)Hn(X))=?
分析:
(1) ϕ′(x)=−xϕ(x)⇒H1=x
求微积分 (−1)nHnϕ+(−1)nHnϕ′(x)=ϕ(n+1)(x)⇒Hn+1=xH
(2)
另外,有Taylor公式
作业:1.5.6 1.6.2 1.6.4 1.6.6 1.6.11
作业讲解
Let C be a collection of sets
proof1: