PAT A1085 Perfect Sequence(***二分+STL upper_bound)

问题链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805381845336064

题意:

     从N个正整数中选择若干个数,使得选出的这些数中的最大值不超过最小值的p倍。问满足条件的选择方案中,选出的数的最大个数。

Note:

 p与序列中的元素均可能达到10的9次方,因此a[i]*p 可能达到10的18次方,必须使用long long进行强制类型转换。

法一:二分查找

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;

int n, p;
int A[100010];

//binarySearch函数在[i+1,n-1]范围内查找第一个大于x的数的位置 
int binarySearch(int i, long long x){
	if(A[n-1] <= x)//如果所有数都不大于x,返回n 
	    return n;
	int left = i + 1, right = n - 1, mid;
	while(left < right){
		mid = (left + right) / 2;
		
		if(A[mid] <= x)
		    left = mid + 1;
		else
		    right = mid;
	}
	return left;
}

int main(){
	cin >> n >> p;
	
	for(int i = 0; i < n; i++)
	    cin >> A[i];
	    
	sort(A, A+n);
	int ans = 1; //最大长度,初值为1(表示至少有一个数)
	for(int i = 0; i < n; i++){
		//在a[i+1] ~ a[n-1]中查找第一个超过a[i]*p的数,返回其位置给j
		int j = binarySearch(i, (long long)A[i] * p);
		ans = max(ans, j - i);//更新最大长度 
	} 
	cout << ans << endl;
	return 0; 
	
} 

二分查找用upper_bound函数

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;

int n, p;
int A[100010];

int main(){
	cin >> n >> p;
	
	for(int i = 0; i < n; i++)
	    cin >> A[i];
	    
	sort(A, A+n);
	int ans = 1; //最大长度,初值为1(表示至少有一个数)
	for(int i = 0; i < n; i++){
		//在a[i+1] ~ a[n-1]中查找第一个超过a[i]*p的数,返回其位置给j
		int j = upper_bound(A + i + 1, A + n, (long long)A[i] * p) - A;
		ans = max(ans, j - i);//更新最大长度 
	} 
	cout << ans << endl;
	return 0; 
	
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值