作者:Matt Miles
出自:Medical Xpress
https://medicalxpress.com/news/2018-10-brain-computer-interface.html
脑-机接口(BCIs,Brain-computer interfaces)代表了神经技术的近期研究进展,其允许计算机系统直接与人或动物脑进行交互。该技术特别适用于脊髓损伤或麻痹的病例。在这些情况下,患者可能会通过使用神经解码器,传输来自大脑的神经指令,进行假肢的行动操作,甚至可以通过功能性电刺激(FES,Functional electrical stimulation),重新使瘫痪的肢体恢复活力。
Michael A. Schwemmer及其同事,在最近的一篇Nature Medicine文章中,详细介绍了他们使用深度神经网络解码器对BCI进行的研究,参与研究的志愿者患有脊髓损伤导致的四肢瘫痪。他们的研究重点是,解决BCI系统的最终用户确定的几个关键需求,即:高精度、最小日常设置、快速响应时间和多功能性,所有这些特征都会受到BCI特定神经解码算法的严重影响。
Schwemmer小组描述了几种不同的方法,用于训练和测试神经网络解码器(NN-BCI)的三种变体,进行变体间的交叉比较,并与一个支持向量机(SVM)解码器基准进行对比。在几年时间内,小组成员与一名患有四肢瘫痪的27岁男性志愿者,共同进行开发和测试,得出了4个BCI解码器范例。志愿者在其左侧初级运动皮层区域植入了一个96通道的微电极阵列,对应于手和手臂的控制。使用从865天的80组会话中收集的皮质内数据,研究人员对这些BCI解码器进行训练和评估。每组会话由两个104秒的数据块组成,其数据内容包含4种运动任务:食指伸展、食指弯曲、手腕伸展、手腕弯曲。
使用来自前40组会话(80个块)的数据开发和校准得到初始神经网络(NN)模型,它没有在训练/测试期的后半段进行更新,被称为固定神经网络(fNN)模型。以fNN为基础,创建了另外两个神经网络模型:监督更新(sNN)模型和无监督更新(uNN)模型。两个模型都使用来自后40组会话(更新/测试)中的第一个块的数据。sNN模型的算法依赖于显式训练标签,即已知的运动时间和类型。而uNN模型依赖于与肢体的预期动作相关的未分化或未知的直接输入。后40组会话中的第二个块用于所有模型(fNN、sNN、uNN、SVM)的准确度测试。
此处使用了四个单独模型,其目的是测试和演示三个神经网络模型相对于彼此和基准SVM模型的各方面指标。例如,监督神经网络(sNN)模型每天更新(在后40组会话中的第一个块期间),并直接与每日重新训练的SVM模型进行比较。固定神经网络(fNN)模型用于证明,在没有更新的情况下,BCI可以维持其准确性达到一年以上。
正如我们将要看到的,无监督神经网络(uNN)可能是最有趣的比较器,因为它试图结合从每日更新中获得的改进的准确性,但没有sNN模型所需的每日设置时间。准确性是所有测试中的关键性能指标,在此定义为后40组会话的第二个块中正确预测的时间段的百分比;准确率超过90%是最初在研究开始时所阐述的四个最终用户要求之一。
sNN始终优于每日重新训练的SVM:其在40个疗程中有37个准确度> 90%,而SVM仅有12个达到了> 90%的准确度。fNN在40组会话中有36个也超过了SVM,其在32组会话中达到了> 90%的准确率。毫无疑问,fNN精度低于sNN的准确度,并且同样作为固定解码器,fNN和SVM与每日更新的解码器相比,在研究期间的准确度呈现下降趋势。
然而,这项研究最有趣的发现可能是无监督神经网络(uNN)的性能,其在准确性方面优于两种固定模型,同时还满足最小日常设置的最终用户要求。在sNN模型需要明确的日常训练的情况下,uNN在其更新模式中包含来自一般用途的数据,其不需要这样的每日设置。与fNN相比,随着时间的推移会出现性能的差距,并且uNN的优势变得显而易见。uNN在响应时间方面也优于SVM,这是另一个关键的最终用户要求。
本研究关于神经病学的另一个重要方面是转移学习,即通过最少的额外训练和数据,可以将新的运动添加到现有的项目中。在这种情况下,“手掌伸开”和“手掌握紧”被添加到前四个动作中,并且所有解码器都被重建。此处,无监督更新也被用于构建无监督的传递神经网络(utNN),其仅在一次训练之后就形成了SVM模型。
最后,通过志愿者的FES控制的手和前臂,同时应用之前的研究,所有这些都在“离线”设置中进行,表明可以使用在原始四运动任务上训练的转移学习的uNN快速创建一个新的解码器,实时控制一只开放的手和三个手柄(可以,叉子和钉子)。在对系统的测试中,志愿者能够在45次尝试中执行所有三个手部移动抓握任务,没有失败。在此之前,他只能成功执行一次抓握任务。
在总结研究结果如何与之前描述的主要最终用户期望相关时,研究人员引用了以下成就:
(i)使用深度NN创建强大的神经解码器,维持高保真BCI控制超过一年没有重新训练;
(ii)引入一种新的更新程序,可以使用通过常规系统获得的数据来提高性能;
(iii)通过使用最少的附加数据进行转移学习来扩展功能;
(iv)引入同时解决这四种竞争的解码框架 BCI性能方面(准确性、速度,寿命和多功能性)。
此外,提供了临床演示,使用无反馈的想象手部运动的历史数据校准的解码器,可以成功用于实时控制FES诱发抓住物体的操作功能。
Schwemmer及其同事继续在更广泛的BCI研究领域中,对他们的研究结果进行更深入的讨论,并对实验的一些具体挑战和局限性进行评论。虽然,注意到uNN解码器的中值响应时间(0.9s)仍然比SVM解码器(1.1s)的响应时间更快,但他们认为小于750 ms的目标可能更接近现实的最终用户期望。
最终,他们得出结论:“我们已经证明基于NN的解码器可能优于其他实现,因为在使用转换学习进行初始解码器校准之后,可以轻松添加新功能。重要的是,我们表明这种增加更多运动的二次更新,需要最小的额外数据量。并且从离线数据和分析中获得的见解,可以延续到一个真实的在线BCI场景,只需要最少的额外数据收集。”