矩阵的偏迹

一、定义

矩阵的偏迹运算是量子力学中的一种特殊的运算,它是一种特殊的矩阵迹运算。只不过这种取迹的过程并不是对全空间展开的,而是对某一个子空间。
如果有两个希尔伯特空间分别记为 HA H A HB H B ,它们可以分别用来表示两个量子系统A和B,那么就能对这两个空间做直积运算,从而得到系统A与B的复合系统,记为:

HA,B=HAHB H A , B = H A ⨂ H B

设空间 HA,B H A , B 中的密度矩阵为 ρA,B ρ A , B 。再设 {wi|i=1,2,...,NB} { w i | i = 1 , 2 , . . . , N B } 为空间 HB H B 的一组基矢,其中 NB N B 为空间 HB H B 的维度,那么定义 ρA,B ρ A , B 对子系统B求偏迹为:

ρA=TrB(ρA,B)=i=1NBwi|ρA,B|wi ρ A = T r B ( ρ A , B ) = ∑ i = 1 N B ⟨ w i | ρ A , B | w i ⟩

上式是按照狄拉克记号写的。其中 wi|ρA,B|wi ⟨ w i | ρ A , B | w i ⟩ 表示 ρA,B ρ A , B wi w i 做内积。但是, ρA,B ρ A , B 是复合希尔伯特空间 HA,B H A , B 中的矩阵,而 wi w i 是空间 HB H B 中的变量,所以这两者做内积就比较特殊。

二、复合空间中的向量与子空间中的向量的内积

为了说明这种内积究竟是如何运算的,需要先定义A,B复合系统(复合空间 HA,B H A , B )中的向量与B空间中的向量做内积是什么意思。
假设X是 HA,B H A , B 中的向量。这样X可以写成:

|X=a,bxa,b|a|b | X ⟩ = ∑ a , b x a , b | a ⟩ ⨂ | b ⟩

也就是将X分解为 HA,B H A , B 中的一组基向量的线性叠加。其中 |a|b | a ⟩ ⨂ | b ⟩ 就是任意一个基向量。而a,b分别又是 HA H A HB H B 的基向量。既然 {b} { b } HB H B 的一组基,那么自然可以把 HB H B 中的任意一个向量Y分解:

|Y=byb|b | Y ⟩ = ∑ b y b | b ⟩

那么定义X与Y的内积为:
X|Y=a,bxa,ba|b|byb|b=a,b,bxa,b yb a| b|b ⟨ X | Y ⟩ = ∑ a , b x a , b ∗ ⟨ a | ⨂ ⟨ b | ⋅ ∑ b y b | b ⟩ = ∑ a , b , b ′ x a , b ∗   y b ′   ⟨ a |   ⟨ b | b ′ ⟩

三、复合空间中的矩阵与子空间中的向量内积

ρ ρ 为复合空间中的矩阵,则:

ρ,B=a,a,b,b|a|bb|a| ρ A , B = ∑ a , a ′ , b , b ′ | a ⟩ ⨂ | b ⟩ ⟨ b ′ | ⨂ ⟨ a ′ |

其中a,a’是中的一组基,b,b’是中的基向量。 || | ⟩ ⟨ | 运算表示向量的直积运算。其中的运算法则就是按照狄拉克记号,把它分解为向量的内积运算:

Y|ρA,B|Y=(b ybb|)(a,a,b,b ρa,ab,b|a|bb|a|)(b yb|b)  =a,aρa,a,b,b yb yb|aa| ⟨ Y | ρ A , B | Y ⟩ = ( ∑ b ″   y b ″ ∗ ⟨ b ″ | ) ( ∑ a , a ′ , b , b ′   ρ a , a ′ b , b ′ | a ⟩ ⨂ | b ⟩ ⟨ b ′ | ⨂ ⟨ a ′ | ) ( ∑ b ″   y b ″ | b ″ ⟩ )     = ∑ a , a ′ ρ a , a ′ , b , b ′   y b ″   y b ″ ∗ | a ⟩ ⟨ a |

所以不难理解偏迹运算写成矩阵形式相当于:

bωb|ρA,B|ωb=a,a,b,bρa,a,b,b|aa| b|b ∑ b ⟨ ω b | ρ A , B | ω b ⟩ = ∑ a , a ′ , b , b ′ ρ a , a ′ , b , b ′ | a ⟩ ⟨ a |   ⟨ b | b ′ ⟩

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值