一、定义
矩阵的偏迹运算是量子力学中的一种特殊的运算,它是一种特殊的矩阵迹运算。只不过这种取迹的过程并不是对全空间展开的,而是对某一个子空间。
如果有两个希尔伯特空间分别记为
HA
H
A
和
HB
H
B
,它们可以分别用来表示两个量子系统A和B,那么就能对这两个空间做直积运算,从而得到系统A与B的复合系统,记为:
设空间 HA,B H A , B 中的密度矩阵为 ρA,B ρ A , B 。再设 {wi|i=1,2,...,NB} { w i | i = 1 , 2 , . . . , N B } 为空间 HB H B 的一组基矢,其中 NB N B 为空间 HB H B 的维度,那么定义 ρA,B ρ A , B 对子系统B求偏迹为:
上式是按照狄拉克记号写的。其中 ⟨wi|ρA,B|wi⟩ ⟨ w i | ρ A , B | w i ⟩ 表示 ρA,B ρ A , B 与 wi w i 做内积。但是, ρA,B ρ A , B 是复合希尔伯特空间 HA,B H A , B 中的矩阵,而 wi w i 是空间 HB H B 中的变量,所以这两者做内积就比较特殊。
二、复合空间中的向量与子空间中的向量的内积
为了说明这种内积究竟是如何运算的,需要先定义A,B复合系统(复合空间
HA,B
H
A
,
B
)中的向量与B空间中的向量做内积是什么意思。
假设X是
HA,B
H
A
,
B
中的向量。这样X可以写成:
也就是将X分解为 HA,B H A , B 中的一组基向量的线性叠加。其中 |a⟩⨂|b⟩ | a ⟩ ⨂ | b ⟩ 就是任意一个基向量。而a,b分别又是 HA H A 和 HB H B 的基向量。既然 {b} { b } 是 HB H B 的一组基,那么自然可以把 HB H B 中的任意一个向量Y分解:
那么定义X与Y的内积为:
三、复合空间中的矩阵与子空间中的向量内积
设 ρ ρ 为复合空间中的矩阵,则:
其中a,a’是中的一组基,b,b’是中的基向量。 |⟩⟨| | ⟩ ⟨ | 运算表示向量的直积运算。其中的运算法则就是按照狄拉克记号,把它分解为向量的内积运算:
所以不难理解偏迹运算写成矩阵形式相当于: