卡尔曼滤波、最小二乘法、维纳滤波之我见

本文探讨了卡尔曼滤波、最小二乘法和维纳滤波的异同。卡尔曼滤波侧重状态空间模型,用于估计系统内部状态;最小二乘法寻求投影,使误差最小化;而维纳滤波关注误差的均方误差。三者在频域和时域中有不同应用,卡尔曼滤波尤其适合非平稳过程。
摘要由CSDN通过智能技术生成

卡尔曼滤波、最小二乘法、维纳滤波之我见

算法要抓住三个方面:模型、策略、求解的方法。

算法 模型 策略 求解的方法
最小二乘法 传递函数 误差平方和最小 目标函数导数为0
卡尔曼滤波 状态空间 均方差最小 先预测,后修正
维纳滤波 传递函数 均方差最小 目标函数导数为0

其实,你说最小二乘可以用在状态空间上吗?完全可以,只要知道状态及其导数就可以。但是跟卡尔曼滤波本质不同在于,需要均方差最小,所以可以定义一种概率分布,使二者相等。
最小二乘法被玩出花的是序贯最小二乘,最容易让人和卡尔曼滤波分不清,因为大家都是迭代求解。但是其实仔细看,其实序贯最小二乘是假设:
wk+1=[wk, Δ \Delta Δ<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值