MIT线性代数笔记-第33讲-复习三

33.复习三

  1. 已知 d u ⃗ d t = A u ⃗ = [ 0 − 1 0 1 0 − 1 0 1 0 ] u ⃗ \dfrac{d \vec{u}}{dt} = A \vec{u} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \vec{u} dtdu =Au = 010101010 u ,求出 u ⃗ \vec{u} u 的通解

    A n s Ans Ans:特征方程为 − λ 3 − 2 λ = 0 -\lambda^3 - 2\lambda = 0 λ32λ=0,解得: λ 1 = 0 , λ 2 = 2 i , λ 2 = − 2 i \lambda_1 = 0 , \lambda_2 = \sqrt{2}i , \lambda_2 = -\sqrt{2}i λ1=0,λ2=2 i,λ2=2 i

    ​    特征向量分别为 x ⃗ 1 = [ 1 0 1 ] , x ⃗ 2 = [ 1 2 i 1 ] , x ⃗ 3 = [ − 1 − 2 i 1 ] \vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} , \vec{x}_2 = \begin{bmatrix} 1 \\ \sqrt{2}i \\ 1 \end{bmatrix} , \vec{x}_3 = \begin{bmatrix} -1 \\ -\sqrt{2}i \\ 1 \end{bmatrix} x 1= 101 ,x 2= 12 i1 ,x 3= 12 i1

    ​    所以通解为 u ⃗ = c 1 [ 1 0 1 ] + c 2 e 2 i t [ 1 2 i 1 ] + c 3 e − 2 i t [ − 1 − 2 i 1 ] \vec{u} = c_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_2 e^{\sqrt{2}i t} \begin{bmatrix} 1 \\ \sqrt{2}i \\ 1 \end{bmatrix} + c_3 e^{-\sqrt{2}i t} \begin{bmatrix} -1 \\ -\sqrt{2}i \\ 1 \end{bmatrix} u =c1 101 +c2e2 it 12 i1 +c3e2 it 12 i1

  2. 反对称矩阵

    满足 − A = A T -A = A^T A=AT的矩阵为反对称矩阵

    • 反对称矩阵的特征值一定是 i i i的若干倍( 0 0 0倍也可以)

      证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明

    • 反对称矩阵一定存在阶数个两两正交的特征向量

      证明: 因为 − A = A T -A = A^T A=AT,所以 A A T = − A 2 = A T A A A^T = -A^2 = A^T A AAT=A2=ATA,所以反对称矩阵一定存在阶数个两两正交的特征向量

  3. 有一个 3 3 3阶矩阵,已知其特征值 λ 1 = 0 , λ 2 = c , λ 3 = 2 \lambda_1 = 0 , \lambda_2 = c , \lambda_3 = 2 λ1=0,λ2=c,λ3=2分别对应特征向量 x ⃗ 1 = [ 1 1 1 ] , x ⃗ 2 = [ 1 − 1 0 ] , x ⃗ 3 = [ 1 1 − 2 ] \vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} , \vec{x}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} , \vec{x}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} x 1= 111 ,x 2= 110 ,x 3= 112

    (1)该矩阵可否对角化

    (2)该矩阵是否可能为对称矩阵

    (3)该矩阵是否可能为正定矩阵

    (4)该矩阵是否可能为马尔可夫矩阵

    (5)该矩阵是否可能为一个投影矩阵的两倍

    A n s Ans Ans:(1)特征向量线性无关,所以该矩阵可对角化

    ​    (2)特征向量正交且特征值均为实数,所以该矩阵可能为对称矩阵

    ​    (3)有一个特征值为 0 0 0,所以该矩阵不可能为正定矩阵

    ​    (4)有一个特征值大于 1 1 1,所以该矩阵不可能为马尔可夫矩阵

    ​    (5)有一个特征值为 2 = 2 ∗ 1 2 = 2 * 1 2=21,所以该矩阵可能为一个投影矩阵的两倍

  4. 已知矩阵 A A A既是一个对称矩阵,又是一个正交矩阵

    (1)求 A A A的特征值

    (2) A A A是否一定为正定矩阵

    (3) A A A的是否一定无重复特征值

    (4)证明 1 2 ( A + I ) \dfrac{1}{2} (A + I) 21(A+I)是投影矩阵

    A n s Ans Ans:(1)因为 A A A为正交矩阵,所以 A A A的特征值为 1 1 1 − 1 -1 1

    ​    (2)否,若 A A A含有特征值 − 1 -1 1则不是

    ​    (3)否,如果 A A A的阶数大于等于 3 3 3则其一定有重复特征值

    ​    (4) [ 1 2 ( A + I ) ] 2 = 1 4 ( A 2 + 2 A + I ) = 1 4 ( I + 2 A + I ) = 1 2 ( A + I ) [\dfrac{1}{2} (A + I)]^2 = \dfrac{1}{4} (A^2 + 2A + I) = \dfrac{1}{4} (I + 2A + I) = \dfrac{1}{2} (A + I) [21(A+I)]2=41(A2+2A+I)=41(I+2A+I)=21(A+I),所以 1 2 ( A + I ) \dfrac{1}{2} (A + I) 21(A+I)是投影矩阵

         还可以通过 1 2 ( A + I ) \dfrac{1}{2} (A + I) 21(A+I)的特征值只有 0 0 0 1 1 1来证明


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

  • 29
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值