MIT线性代数笔记-第34讲-左右逆,伪逆

34.左右逆,伪逆

左右逆

之前讲到的逆都是针对可逆方阵而言的,对于长方矩阵,实际上也有广义的逆,那就是左逆和右逆

  1. 左逆

    当矩阵列满秩,即 r = n r = n r=n时,该矩阵有左逆(虽然各列线性无关,但是 r < m r < m r<m,列向量无法组成一组基,所以没有右逆),设该矩阵为 A A A A A A列满秩,所以 A T A A^T A ATA是可逆矩阵,有 ( A T A ) − 1 A T A = I (A^T A)^{-1} A^T A = I (ATA)1ATA=I,所以左逆 A l e f t − 1 = ( A T A ) − 1 A T A^{-1}_{left} = (A^T A)^{-1} A^T Aleft1=(ATA)1AT,且得到的单位矩阵是 n n n阶的

  2. 右逆

    当矩阵 A A A行满秩时, A A T A A^T AAT是可逆矩阵,有 A A T ( A A T ) − 1 = I A A^T (A A^T)^{-1} = I AAT(AAT)1=I,所以有右逆 A r i g h t − 1 = A T ( A A T ) − 1 A^{-1}_{right} = A^T (A A^T)^{-1} Aright1=AT(AAT)1,且得到的单位矩阵是 m m m阶的

  3. 当列满秩时,有 A l e f t − 1 A = I A^{-1}_{left} A = I Aleft1A=I,但是如果把左逆放到右边,就可以得到: A A l e f t − 1 = A ( A T A ) − 1 A T A A^{-1}_{left} = A (A^T A)^{-1} A^T AAleft1=A(ATA)1AT,即 A A A列空间的投影矩阵;同理,当行满秩时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值