Scipy的几个简单图像操作

本文介绍了Scipy.ndimage库在数字图像处理中的应用,包括如何模糊灰度图像和彩色图像,以及使用Sobel滤波器和高斯模糊进行图像导数计算。此外,还探讨了形态学操作。
摘要由CSDN通过智能技术生成
%matplotlib inline

Some simple usage of Scipy.ndimage

Bluring image

from PIL import Image
import numpy as np
from scipy.ndimage import filters
from matplotlib import pyplot as plt

blur gray image

im = np.array(Image.open(u'测试图片集/1.jpg').convert('L'))
im2 = filters.gaussian_filter(im,3)
im3 = filters.gaussian_filter(im,5)

plt.subplot(1,3,1)
plt.axis('off')
plt.imshow(im,cmap='gray')
plt.title('original')

plt.subplot(1,3,2)
plt.axis('off')
plt.imshow(im2,cmap='gray')
plt.title('gaussian(kernel 3)')

plt.subplot(1,3,3)
plt.axis('off')
plt.imshow(im3,cmap='gray')
plt.title('gaussian(kernel 5)')
<matplotlib.text.Text at 0x837a1d0>

output_5_1.png

blur color image

To blur color images, simply

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值