IEEE CVPR MMFM Challenge 2024 多模态基础模型挑战赛开始啦~~

第二届多模态基础模型挑战赛聚焦于改进文档图像理解,包含两阶段,第一阶段提供公开数据集进行训练,第二阶段发布非公开测试集以避免过度拟合。参与者有机会展示模型实践并赢取奖项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MMFM Challenge

第二届多模态基础模型挑战赛开始啦

多模基础模型(MMFM)在许多计算机视觉任务中显示出前所未有的优异性能。然而,在一些非常具体的任务(如文档理解)上,它们的性能仍然不太尽如人意。为了评估和改进这些用于文档图像理解任务的强大多模态模型,我们利用了大量公开和非公开的数据,提出了一个挑战赛。我们面临的挑战赛分为两个阶段。在第一阶段,我们发布了一个由公开数据组成的训练集,在第二阶段,我们会发布一个额外的测试集供大家测试使用。

As part of our upcoming “What is Next in Multimodal Foundation Models?” , we have a cool challenge on enterprise applications (understanding document and other text-rich images). This is a great opportunity to test the most practical implications of your models and showcase your work in front of a large audience. Prizes and award certificates will be provided to the winners!

我们的数据集
我们的数据集
第1阶段
在这一阶段,我们建立了一个全面的数据集,包括公开可用的数据集,包括DocVQA、FUNSD、IconQA、InfogrpacisVQA、Tabfact、TextoolVQA、WebSrc、Wilderreceive、WTQ。所有这些数据集都与图像文档理解挑战的目标相一致,这些挑战涉及特定的领域,如表格核查、图文问答、视频图文问答问题等。该集合由一个训练集和测试集组成,如果您需要可以从MMFM数据集下载。
第2阶段
在这个阶段,将发布一个额外的测试集。该数据集的初衷是防止人们在公开可用的数据集上训练过度拟合。该测试集将由与第1阶段数据集的分布类似的数据组成,但不会由任何公开可用的数据源组成。这些数据将由组织者适时分享给团队。
Dataset
如果您想要了解更多的信息,请点击链接:https://sites.google.com/view/2nd-mmfm-workshop/challenge?authuser=0 了解更多的内容。
欢迎您加入MMFM Challenge!
MMFM 宣传海报

重要的时间节点

一些比赛的重要时间节点提供给您,不要错过哦~~
重要的时间节点

### CVPR 2024 关于多模态融合的研究进展 CVPR 2024 中有多篇关于多模态融合的高质量研究论文,这些工作展示了如何通过先进的技术手段提升多模态数据处理的能力。以下是几个重要的研究成果及其核心贡献: #### 1. **mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration** 该论文探讨了多模态大语言模型(Multi-modal Large Language Models, MLLMs)的发展方向,并引入了一种新的协作机制来增强不同模态之间的交互效果[^1]。具体而言,mPLUG-Owl2 提出了基于动态融合的技术方案,在多个实验场景下验证了其优越性。 #### 2. **Embracing Unimodal Aleatoric Uncertainty for Robust Multimodal Fusion** 此研究关注单模态不确定性对多模态融合的影响,并提出一种鲁棒的方法用于解决因噪声或其他干扰因素引起的性能下降问题[^2]。作者设计了一个框架,能够有效评估并利用每种输入源的置信水平,从而优化最终决策的质量。 #### 3. **Ablation Study on Five Datasets** 一项详细的消融研究表明,采用特定策略可以显著改善某些复杂任务的表现。例如,“头部梯度修正”(Head Gradient Modification, HGM) 和 “动态融合” (Dynamic Fusion, DF) 技术被证明特别适合应用于涉及多种感官信号的情况[^3]。值得注意的是,这类改进措施通常只作用于跨模式情境而不改变单独处理流程。 #### 工业应用视角下的新突破 除了理论层面的进步外,《Improving LiDAR-Vision Foundation Models via Three Pillars》还讨论了针对实际需求所开发的新颖解决方案——即通过构建更贴近现实世界的训练样本集合来弥补传统资源不足之处[^4]。这种做法不仅有助于推动学术界探索未知领域,也为产业落地提供了坚实的基础支持。 综上所述,CVPR 2024 的相关成果表明当前阶段围绕着更加智能化、自适应性强以及可解释性的目标正在稳步推进各项关键技术革新。 ```python # 示例代码展示简单的多模态特征提取逻辑 def multimodal_feature_extractor(image_data, text_data): image_features = extract_image_features(image_data) text_embeddings = generate_text_embedding(text_data) fused_representation = combine_modalities(image_features, text_embeddings) return fused_representation def combine_modalities(modality_a, modality_b): # 动态加权融合算法模拟 weights = calculate_modality_weights(modality_a, modality_b) combined = weighted_sum([modality_a, modality_b], weights) return combined ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值