深度学习--线性函数基础

本文介绍了深度学习中的线性函数基础,包括logistic classifier的概念,X与权重矩阵W的乘法用于生成预测输出y。讲解了softmax函数如何将得分转换为概率,并强调了训练神经网络的目标是优化权重和偏差。在实现过程中,使用tf.Variable来存储可变权重,通过tf.truncated_normal()生成随机权重,确保模型的多样性和避免局部最优。偏差通常初始化为0,使用tf.zeros()实现。
摘要由CSDN通过智能技术生成
  • logistic classifier又叫做linear classifier
    WX+b=y W X + b = y

    X代表输入,W表示权重,b表示偏差项,y表示输出。其中W和b是要用到机器学习的地方。
  • 矩阵乘法器(matrix multiplier):将X与矩阵W相乘来生成预测结果y
  • 将y中的得分转换为概率的工具叫做softmax

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值