💓 博客主页:借口的CSDN主页
⏩ 文章专栏:《热点资讯》
计算机科学领域中,基于深度强化学习的智能交通信号控制优化设计与实现
随着城市化进程的加速,交通拥堵问题日益严重,传统的定时或感应式交通信号控制系统难以适应复杂多变的道路状况。为了提高道路通行效率,降低车辆等待时间,减少尾气排放,研究者们开始探索利用人工智能技术来优化交通信号控制策略。其中,深度强化学习(Deep Reinforcement Learning, DRL)作为一种结合了深度神经网络和强化学习算法的方法,在处理非线性、不确定性和动态变化方面表现出色。
本文将探讨基于深度强化学习的智能交通信号控制系统的优化设计与实现,包括其基本概念、关键技术以及当前面临的挑战,并结合具体案例进行分析。