计算机科学领域中,基于深度强化学习的智能交通信号控制优化设计与实现

💓 博客主页:借口的CSDN主页
⏩ 文章专栏:《热点资讯》

计算机科学领域中,基于深度强化学习的智能交通信号控制优化设计与实现

引言

随着城市化进程的加速,交通拥堵问题日益严重,传统的定时或感应式交通信号控制系统难以适应复杂多变的道路状况。为了提高道路通行效率,降低车辆等待时间,减少尾气排放,研究者们开始探索利用人工智能技术来优化交通信号控制策略。其中,深度强化学习(Deep Reinforcement Learning, DRL)作为一种结合了深度神经网络和强化学习算法的方法,在处理非线性、不确定性和动态变化方面表现出色。

本文将探讨基于深度强化学习的智能交通信号控制系统的优化设计与实现,包括其基本概念、关键技术以及当前面临的挑战,并结合具体案例进行分析。

图示1:深度强化学习的基本框架

深度强化学习概述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值