设 x p r e d > 0 x_{pred}>0 xpred>0, x p r e d x_{pred} xpred相对于 x t r u e x_{true} xtrue的相对误差为 δ δ δ,求 ln x p r e d \ln x_{pred} lnxpred的误差.
本文基于上述问题,来展开讨论,其他情况也许可同理。
我们知道对于连续可导的函数,它的某一点的瞬时变化趋势是一个线性变化,例如函数 f ( x ) = ln x f(x)=\ln x f(x)=lnx,它在某点 x 0 x_0 x0的瞬时变化趋势是斜率为 d ( ln x 0 ) d x 0 \frac{\mathrm{d}(\ln x_0)}{\mathrm{d}x_0} dx0d(lnx0)(%%即 f ′ ( x 0 ) f^\prime(x_0) f′(x0)%%)的线性变化.
所以对于连续可导的函数,如果相对于
x
0
x_0
x0,
Δ
x
\Delta x
Δx很小,即变化量极小,我们可以近似地将它产生的变化近似为一个线性变化和一个量级高于它很多的无穷小变化,我们可以忽略这个无穷小变化,近似地把变化看作为线性变化,如此一来则有:
Δ
y
≈
f
′
(
x
0
)
Δ
x
\Delta y \approx f^\prime(x_0) \Delta x
Δy≈f′(x0)Δx.这就是一种“微分线性近似”的思想.
%%
这里的
Δ
x
\Delta x
Δx表示的即为变化量,在讨论误差时,也可以理解为
x
p
r
e
d
x_{pred}
xpred相对于
x
t
r
u
e
x_{true}
xtrue的绝对误差,
Δ
y
\Delta y
Δy同理;
这里使用
δ
\delta
δ表示相对误差;
x
t
r
u
e
x_{true}
xtrue表示
x
x
x的真实值,
x
p
r
e
d
x_{pred}
xpred表示
x
x
x的预测值,
y
y
y同理;
%%
则:
由题意 : δ = Δ x x t r u e = x p r e d − x t r u e x t r u e 有 : Δ x = δ ⋅ x t r u e x t r u e = x p r e d δ + 1 由微分线性近似 : Δ ( ln x p r e d ) ≈ d ( ln x t r u e ) d x t r u e Δ x 又 : d ( ln x t r u e ) d x t r u e Δ x = 1 x t r u e ⋅ x t r u e ⋅ δ = δ 故 : Δ ( ln x p r e d ) ≈ δ δ ln x p r e d = Δ ( ln x p r e d ) ln x t r u e ≈ δ ln x t r u e 又 : x t r u e = x p r e d δ + 1 故有 : δ ln x p r e d ≈ δ ln x p r e d − ln ( δ + 1 ) \begin{align} &由题意: \\ &\delta = \frac{\Delta x}{x_{true}} = \frac{x_{pred}-x_{true}}{x_{true}} \\ &有:\Delta x =\delta \cdot x_{true} \qquad x_{true}= \frac{x_{pred}}{\delta+1} \\ &由微分线性近似: \\ &\Delta(\ln x_{pred}) \approx \frac{\mathrm{d}(\ln x_{true})}{\mathrm{d}x_{true}} \Delta x \\ &又:\frac{\mathrm{d}(\ln x_{true})}{\mathrm{d}x_{true}} \Delta x = \frac{1}{x_{true}} \cdot x_{true} \cdot \delta = \delta \\ &故: \Delta(\ln x_{pred}) \approx \delta \\ &\delta_{\ln x_{pred}} = \frac{\Delta(\ln x_{pred})}{\ln x_{true}} \approx \frac{\delta}{\ln x_{true}} \quad又: x_{true}= \frac{x_{pred}}{\delta+1} \\ &故有: \delta_{\ln x_{pred}} \approx \frac{\delta}{\ln x_{pred} - \ln ({\delta+1})} \end{align} 由题意:δ=xtrueΔx=xtruexpred−xtrue有:Δx=δ⋅xtruextrue=δ+1xpred由微分线性近似:Δ(lnxpred)≈dxtrued(lnxtrue)Δx又:dxtrued(lnxtrue)Δx=xtrue1⋅xtrue⋅δ=δ故:Δ(lnxpred)≈δδlnxpred=lnxtrueΔ(lnxpred)≈lnxtrueδ又:xtrue=δ+1xpred故有:δlnxpred≈lnxpred−ln(δ+1)δ
这里使用一种近似的思想,是为了尝试寻找在预测值与真实值极其接近的情况下, δ x 与 δ ln x \delta_x与\delta_{\ln x} δx与δlnx以及 Δ x \Delta x Δx与 Δ ( ln x ) \Delta (\ln x) Δ(lnx)的关系,如果已知 x p r e d x_{pred} xpred和 δ x \delta_x δx而要求 Δ ( ln x ) \Delta (\ln x) Δ(lnx)或者 δ ln x \delta_{\ln x} δlnx,我们完全可以根据 δ = x p r e d − x t r u e x t r u e \delta =\frac{x_{pred}-x_{true}}{x_{true}} δ=xtruexpred−xtrue求出真实值,然后根据公式表达出 ln x \ln x lnx误差的准确值。
绝对误差 = 预测值 − 真实值 相对误差 = 绝对误差 真实值 绝对误差=预测值-真实值 \qquad 相对误差=\frac{绝对误差}{真实值} 绝对误差=预测值−真实值相对误差=真实值绝对误差
设 x x x的相对误差为 2 % 2\% 2%,求 x n x^n xn的相对误差
示例:
Δ
x
=
δ
⋅
x
t
r
u
e
Δ
(
x
n
)
≈
d
(
x
t
r
u
e
n
)
d
x
t
r
u
e
⋅
Δ
x
Δ
(
x
n
)
≈
n
x
t
r
u
e
n
−
1
⋅
Δ
x
δ
a
s
k
=
Δ
(
x
n
)
x
t
r
u
e
n
代入
Δ
(
x
n
)
≈
n
x
t
r
u
e
n
−
1
Δ
x
:
δ
a
s
k
≈
n
x
t
r
u
e
n
−
1
Δ
x
x
t
r
u
e
n
代入
Δ
x
=
δ
x
t
r
u
e
:
δ
a
s
k
≈
n
δ
其中
δ
=
2
%
\begin{align} &\Delta x = \delta \cdot x_{true} \\ &\Delta(x^n) \approx \frac{\mathrm{d}(x_{true}^n)}{\mathrm{d}x_{true}} \cdot \Delta x \\ &\Delta(x^n) \approx nx_{true}^{n-1} \cdot \Delta x \\ &\delta_{ask} = \frac{\Delta(x^n)}{x_{true}^n} \\ 代入\Delta(x^n) \approx nx_{true}^{n-1} \Delta x: \quad &\delta_{ask} \approx \frac{nx_{true}^{n-1}\Delta x}{x_{true}^n} \\\\ 代入\Delta x = \delta x_{true}: \quad &\delta_{ask} \approx n\delta \qquad 其中\delta = 2\% \end{align}
代入Δ(xn)≈nxtruen−1Δx:代入Δx=δxtrue:Δx=δ⋅xtrueΔ(xn)≈dxtrued(xtruen)⋅ΔxΔ(xn)≈nxtruen−1⋅Δxδask=xtruenΔ(xn)δask≈xtruennxtruen−1Δxδask≈nδ其中δ=2%