误差传递的一些个人分析

x p r e d > 0 x_{pred}>0 xpred>0 x p r e d x_{pred} xpred相对于 x t r u e x_{true} xtrue的相对误差为 δ δ δ,求 ln ⁡ x p r e d \ln x_{pred} lnxpred的误差.

本文基于上述问题,来展开讨论,其他情况也许可同理。

我们知道对于连续可导的函数,它的某一点的瞬时变化趋势是一个线性变化,例如函数 f ( x ) = ln ⁡ x f(x)=\ln x f(x)=lnx,它在某点 x 0 x_0 x0的瞬时变化趋势是斜率为 d ( ln ⁡ x 0 ) d x 0 \frac{\mathrm{d}(\ln x_0)}{\mathrm{d}x_0} dx0d(lnx0)(%%即 f ′ ( x 0 ) f^\prime(x_0) f(x0)%%)的线性变化.

所以对于连续可导的函数,如果相对于 x 0 x_0 x0 Δ x \Delta x Δx很小,即变化量极小,我们可以近似地将它产生的变化近似为一个线性变化和一个量级高于它很多的无穷小变化,我们可以忽略这个无穷小变化,近似地把变化看作为线性变化,如此一来则有: Δ y ≈ f ′ ( x 0 ) Δ x \Delta y \approx f^\prime(x_0) \Delta x Δyf(x0)Δx.这就是一种“微分线性近似”的思想.
函数某点的导数与切线
%%

这里的 Δ x \Delta x Δx表示的即为变化量,在讨论误差时,也可以理解为 x p r e d x_{pred} xpred相对于 x t r u e x_{true} xtrue的绝对误差,
Δ y \Delta y Δy同理;
这里使用 δ \delta δ表示相对误差;
x t r u e x_{true} xtrue表示 x x x的真实值,
x p r e d x_{pred} xpred表示 x x x的预测值,
y y y同理;

%%
则:

由题意 : δ = Δ x x t r u e = x p r e d − x t r u e x t r u e 有 : Δ x = δ ⋅ x t r u e x t r u e = x p r e d δ + 1 由微分线性近似 : Δ ( ln ⁡ x p r e d ) ≈ d ( ln ⁡ x t r u e ) d x t r u e Δ x 又 : d ( ln ⁡ x t r u e ) d x t r u e Δ x = 1 x t r u e ⋅ x t r u e ⋅ δ = δ 故 : Δ ( ln ⁡ x p r e d ) ≈ δ δ ln ⁡ x p r e d = Δ ( ln ⁡ x p r e d ) ln ⁡ x t r u e ≈ δ ln ⁡ x t r u e 又 : x t r u e = x p r e d δ + 1 故有 : δ ln ⁡ x p r e d ≈ δ ln ⁡ x p r e d − ln ⁡ ( δ + 1 ) \begin{align} &由题意: \\ &\delta = \frac{\Delta x}{x_{true}} = \frac{x_{pred}-x_{true}}{x_{true}} \\ &有:\Delta x =\delta \cdot x_{true} \qquad x_{true}= \frac{x_{pred}}{\delta+1} \\ &由微分线性近似: \\ &\Delta(\ln x_{pred}) \approx \frac{\mathrm{d}(\ln x_{true})}{\mathrm{d}x_{true}} \Delta x \\ &又:\frac{\mathrm{d}(\ln x_{true})}{\mathrm{d}x_{true}} \Delta x = \frac{1}{x_{true}} \cdot x_{true} \cdot \delta = \delta \\ &故: \Delta(\ln x_{pred}) \approx \delta \\ &\delta_{\ln x_{pred}} = \frac{\Delta(\ln x_{pred})}{\ln x_{true}} \approx \frac{\delta}{\ln x_{true}} \quad又: x_{true}= \frac{x_{pred}}{\delta+1} \\ &故有: \delta_{\ln x_{pred}} \approx \frac{\delta}{\ln x_{pred} - \ln ({\delta+1})} \end{align} 由题意:δ=xtrueΔx=xtruexpredxtrue:Δx=δxtruextrue=δ+1xpred由微分线性近似:Δ(lnxpred)dxtrued(lnxtrue)Δx:dxtrued(lnxtrue)Δx=xtrue1xtrueδ=δ:Δ(lnxpred)δδlnxpred=lnxtrueΔ(lnxpred)lnxtrueδ:xtrue=δ+1xpred故有:δlnxpredlnxpredln(δ+1)δ

这里使用一种近似的思想,是为了尝试寻找在预测值与真实值极其接近的情况下, δ x 与 δ ln ⁡ x \delta_x与\delta_{\ln x} δxδlnx以及 Δ x \Delta x Δx Δ ( ln ⁡ x ) \Delta (\ln x) Δ(lnx)的关系,如果已知 x p r e d x_{pred} xpred δ x \delta_x δx而要求 Δ ( ln ⁡ x ) \Delta (\ln x) Δ(lnx)或者 δ ln ⁡ x \delta_{\ln x} δlnx,我们完全可以根据 δ = x p r e d − x t r u e x t r u e \delta =\frac{x_{pred}-x_{true}}{x_{true}} δ=xtruexpredxtrue求出真实值,然后根据公式表达出 ln ⁡ x \ln x lnx误差的准确值。

绝对误差 = 预测值 − 真实值 相对误差 = 绝对误差 真实值 绝对误差=预测值-真实值 \qquad 相对误差=\frac{绝对误差}{真实值} 绝对误差=预测值真实值相对误差=真实值绝对误差

x x x的相对误差为 2 % 2\% 2%,求 x n x^n xn的相对误差

示例:
Δ x = δ ⋅ x t r u e Δ ( x n ) ≈ d ( x t r u e n ) d x t r u e ⋅ Δ x Δ ( x n ) ≈ n x t r u e n − 1 ⋅ Δ x δ a s k = Δ ( x n ) x t r u e n 代入 Δ ( x n ) ≈ n x t r u e n − 1 Δ x : δ a s k ≈ n x t r u e n − 1 Δ x x t r u e n 代入 Δ x = δ x t r u e : δ a s k ≈ n δ 其中 δ = 2 % \begin{align} &\Delta x = \delta \cdot x_{true} \\ &\Delta(x^n) \approx \frac{\mathrm{d}(x_{true}^n)}{\mathrm{d}x_{true}} \cdot \Delta x \\ &\Delta(x^n) \approx nx_{true}^{n-1} \cdot \Delta x \\ &\delta_{ask} = \frac{\Delta(x^n)}{x_{true}^n} \\ 代入\Delta(x^n) \approx nx_{true}^{n-1} \Delta x: \quad &\delta_{ask} \approx \frac{nx_{true}^{n-1}\Delta x}{x_{true}^n} \\\\ 代入\Delta x = \delta x_{true}: \quad &\delta_{ask} \approx n\delta \qquad 其中\delta = 2\% \end{align} 代入Δ(xn)nxtruen1Δx:代入Δx=δxtrue:Δx=δxtrueΔ(xn)dxtrued(xtruen)ΔxΔ(xn)nxtruen1Δxδask=xtruenΔ(xn)δaskxtruennxtruen1Δxδasknδ其中δ=2%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值