python k-means聚类算法 物流分配预测实战(超详细,附源码)

数据集和地图可以点赞关注收藏后评论区留下QQ邮箱或者私信博主要

聚类是一类机器学习基础算法的总称。

聚类的核心计算过程是将数据对象集合按相似程度划分成多个类,划分得到的每个类称为聚类的簇

聚类不等于分类,其主要区别在于聚类所面对的目标类别是未知的

k-means聚类也称为K均值聚类算法,是典型的聚类算法,对于给定的数据集和需要划分的类数K,算法根据距离函数进行迭代处理,动态 的把数据划分成K个簇,直到收敛为止,簇中心也称为聚类中心

先来个小例子

这个是通过聚类算法对鸢尾花数据集的预测结果

 代码如下

from sklearn.cluster import  KMeans
from sklearn import  datasets
import  numpy as np
iris=datasets.load_iris()
x=iris.data
y=iris.target
clf=KMeans(n_clusters=3)
model=clf.fit(x)
predicted=model.predict(x)
print("预测值",predicted)
print("真实值",y)
print()

<

评论 77
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值