深入理解机器学习聚类算法:K-means详解与实战应用

一、引言

在机器学习领域,聚类分析是一种重要的无监督学习方法,它能够将数据集中的样本划分为若干个不相交的子集,即“簇”。K-means聚类算法作为聚类分析中最经典和最常用的算法之一,凭借其简洁、高效的特点,受到了广泛的关注和应用。本文将深入探讨K-means聚类算法的原理、实现步骤、应用场景以及优化方法,为读者提供一个全面而深入的学习指南。

                 

二、K-means聚类算法原理

                    

K-means聚类算法的核心思想是将数据集中的n个样本划分为k个簇(k≤n),使得每个簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。算法的执行过程通常包括以下几个步骤:

2.1 初始化

首先,从数据集中随机选择k个样本作为初始的簇中心(也称为质心)。这k个质心的选择对于最终的聚类结果有很大的影响,因为不同的初始质心可能导致不同的聚类结果。

2.2 分配

对于数据集中的每个样本,计算其与k个簇中心的距离(通常采用欧氏距离),然后将该样本分配给距离其最近的簇中心所在的簇。这一步实现了对样本的初步分类。

2.3 更新

对于每个簇,计算其内部所有样本的均值(即质心),并将该均值作为新的簇中心。这一步是为了使每个簇的样本更加紧密地围绕在其质心周围,从而提高聚类的效果

2.4迭代

重复步骤分配更新,直到簇中心不再发生显著变化或达到预定的迭代次数。在迭代过程中,簇中心会不断地更新,使得每个簇的样本更加紧密地聚集在一起。

这种方法在理解和实现上都十分简单,但缺点却也十分明显,十分依赖于初始给定的聚类数目;同时随机初始化可能会生成不同的聚类效果,所以它缺乏重复性和连续性。

和K均值类似的K中值算法,在计算过程中利用中值来计算聚类中心,使得局外点对它的影响大大减弱;但每一次循环计算中值矢量带来了计算速度的大大下降。

语法参考 https://scikit-learn.org.cn/view/383.html

三、K-means聚类算法实现

在实现K-means聚类算法时,我们需要考虑以下几个关键步骤:

3.1数据预处理

首先,我们需要对数据进行预处理,包括缺失值填充、异常值处理、特征缩放等。这些预处理步骤有助于提高聚类的效果和稳定性。

3.2初始化质心

在初始化质心时,我们可以采用随机选择的方式,但更好的方法是根据数据的分布特性来选择初始质心。例如,可以使用K-means++算法来初始化质心,使得初始质心更加均匀地分布在数据集中。

3.3计算距离并分配样本

对于数据集中的每个样本,我们需要计算其与k个簇中心的距离,并将该样本分配给距离其最近的簇中心所在的簇。在计算距离时,我们通常使用欧氏距离作为度量标准,但也可以根据实际情况选择其他距离度量方式。

3.4更新簇中心

对于每个簇,我们需要计算其内部所有样本的均值作为新的簇中心。这一步是为了使每个簇的样本更加紧密地围绕在其质心周围。

3.5迭代优化

在迭代过程中,我们需要不断地更新簇中心并重新分配样本,直到满足停止条件(如簇中心不再发生显著变化或达到预定的迭代次数)。在迭代过程中,我们可以使用一些优化技巧来加速收敛和提高聚类效果,如使用KDTree或BallTree等数据结构来加速距离计算。

四、K-means聚类算法应用场景

K-means聚类算法在实际应用中具有广泛的应用场景,以下列举几个典型的应用实例:

4.1客户行为分析

在电商、金融等领域,企业可以通过收集客户的消费行为、交易记录等数据,利用K-means算法将客户划分为不同的群体。根据每个群体的特征,企业可以制定针对性的营销策略,提高客户满意度和忠诚度。

4.2图像分割

在图像处理领域,K-means算法可以用于图像分割。通过将图像中的像素点划分为不同的簇,可以实现图像的自动分割和区域提取。这种方法在医学图像处理、卫星遥感等领域具有广泛的应用。

4.3文本聚类

在文本挖掘和信息检索领域,K-means算法可以用于文本聚类。通过将文本数据中的文档或句子划分为不同的簇,可以实现文本的自动分类和主题提取。这种方法在新闻分类、邮件过滤等领域具有广泛的应用。

4.4推荐系统

在电商、社交媒体等应用场景中,推荐系统可以根据用户的历史行为和偏好为用户推荐感兴趣的产品或内容。K-means算法可以用于对用户进行聚类,将具有相似兴趣或行为的用户划分为同一簇,从而实现更精准的推荐。

五、K-means聚类算法优化

为了克服K-means算法的局限性并提高其性能,研究者们提出了多种优化方法。以下列举几种典型的优化算法:

5.1K-Medoids聚类

K-Medoids聚类算法使用簇中的某个实际样本点作为簇中心(即medoid),而不是使用所有

样本点的均值。这种方法可以有效避免异常值对聚类结果的影响,并且对于某些非凸形状的簇也能得到较好的聚类效果。

5.2初始质心选择优化

K-means++算法是一种优化的初始质心选择方法。该算法在初始化时,尽量使得初始质心之间的距离尽可能远,从而避免初始质心过于集中或过于分散。通过这种方法,可以使得后续的聚类过程更加稳定和有效。

5.3距离度量优化

除了欧氏距离,还可以使用其他距离度量方式,如曼哈顿距离、余弦相似度等。根据数据的特性选择合适的距离度量方式,可以提高聚类的效果。

5.4迭代优化策略

为了加速算法的收敛和提高聚类效果,可以采用一些迭代优化策略。例如,在每次迭代中,可以只更新部分簇中心,而不是所有簇中心;或者可以采用并行计算的方式来加速算法的执行。

5.5轮廓系数评估

轮廓系数是一种常用的聚类效果评估指标。通过计算每个样本的轮廓系数,可以评估聚类结果的紧密程度和分离程度。根据轮廓系数的值,可以调整算法的参数或选择更合适的聚类算法。

六、K-means聚类算法的局限性与改进方向

尽管K-means聚类算法具有广泛的应用场景和优秀的性能,但它也存在一些局限性。以下是一些常见的局限性和可能的改进方向:

6.1对初始质心选择的敏感性

K-means算法对初始质心的选择非常敏感。不同的初始质心可能导致不同的聚类结果。为了降低这种敏感性,可以采用K-means++等优化算法来初始化质心。

6.2无法处理非凸形状的簇

K-means算法只能发现凸形状的簇。对于非凸形状的簇,它可能无法得到理想的聚类结果。为了处理非凸形状的簇,可以考虑使用基于密度的聚类算法或谱聚类等算法。

6.3容易陷入局部最优解

K-means算法在迭代过程中容易陷入局部最优解。为了克服这个问题,可以采用模拟退火、遗传算法等优化方法来寻找全局最优解。

七、K-means聚类实战应用

为了更好地理解K-means算法的实际应用,我们将使用sklearn库中的鸢尾花(Iris)数据集进行聚类分析。

数据集样本数属性维度类别个数
Iris15043

7.1 数据准备与预处理

首先,确保你已经安装了sklearn库。如果没有安装,可以使用pip进行安装:

pip install -U scikit-learn

然后,我们加载鸢尾花数据集,并进行必要的预处理操作,如数据标准化。

from sklearn.datasets import load_iris  
from sklearn.preprocessing import StandardScaler  
from sklearn.cluster import KMeans  
import matplotlib.pyplot as plt  
  
# 加载鸢尾花数据集  
iris = load_iris()  
X = iris.data  
y = iris.target  
  
# 数据标准化  
scaler = StandardScaler()  
X_scaled = scaler.fit_transform(X)

7.2 K-means聚类与可视化

接下来,我们使用KMeans类进行K-means聚类,并通过PCA降维和matplotlib进行可视化。

from sklearn.decomposition import PCA  
  
# 设置聚类数k为3(与鸢尾花数据集的实际类别数相同)  
kmeans = KMeans(n_clusters=3, random_state=42)  
  
# 进行聚类  
y_pred = kmeans.fit_predict(X_scaled)  
  
# 使用PCA进行降维以便于可视化  
pca = PCA(n_components=2)  
X_pca = pca.fit_transform(X_scaled)  
  
# 可视化聚类结果  
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y_pred, cmap='viridis', marker='o')  
centers = pca.transform(kmeans.cluster_centers_)  
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5, marker='x')  
plt.title("K-means clustering of Iris dataset")  
plt.xlabel("PCA Feature 1")  
plt.ylabel("PCA Feature 2")  
plt.show()

7.3 结果分析与讨论

通过观察可视化结果,我们可以看到K-means算法成功地将鸢尾花数据集划分为三个簇,且聚类结果与数据集的实际类别标签较为吻合。这说明K-means算法在鸢尾花数据集上取得了较好的聚类效果。

然而,需要注意的是,K-means算法对于初始聚类中心的选择是敏感的。为了获得更稳定的聚类结果,我们可以尝试多次运行算法并选择最优的结果,或者使用一些改进的K-means算法(如K-means++)来优化初始聚类中心的选择。

八、总结

K-means聚类算法是一种简单、高效且广泛应用的聚类算法。通过深入理解其原理、实现步骤和优化方法,我们可以更好地应用该算法并解决实际问题。同时,我们也应该认识到K-means算法的局限性和改进方向,以便在实际应用中做出更合理的选择和调整。希望本文能为读者提供一个全面而深入的K-means聚类算法学习指南。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值