一、引言
在机器学习领域,聚类分析是一种重要的无监督学习方法,它能够将数据集中的样本划分为若干个不相交的子集,即“簇”。K-means聚类算法作为聚类分析中最经典和最常用的算法之一,凭借其简洁、高效的特点,受到了广泛的关注和应用。本文将深入探讨K-means聚类算法的原理、实现步骤、应用场景以及优化方法,为读者提供一个全面而深入的学习指南。
二、K-means聚类算法原理
K-means聚类算法的核心思想是将数据集中的n个样本划分为k个簇(k≤n),使得每个簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。算法的执行过程通常包括以下几个步骤:
2.1 初始化
首先,从数据集中随机选择k个样本作为初始的簇中心(也称为质心)。这k个质心的选择对于最终的聚类结果有很大的影响,因为不同的初始质心可能导致不同的聚类结果。
2.2 分配
对于数据集中的每个样本,计算其与k个簇中心的距离(通常采用欧氏距离),然后将该样本分配给距离其最近的簇中心所在的簇。这一步实现了对样本的初步分类。
2.3 更新
对于每个簇,计算其内部所有样本的均值(即质心),并将该均值作为新的簇中心。这一步是为了使每个簇的样本更加紧密地围绕在其质心周围,从而提高聚类的效果
2.4迭代
重复步骤分配和更新,直到簇中心不再发生显著变化或达到预定的迭代次数。在迭代过程中,簇中心会不断地更新,使得每个簇的样本更加紧密地聚集在一起。
这种方法在理解和实现上都十分简单,但缺点却也十分明显,十分依赖于初始给定的聚类数目;同时随机初始化可能会生成不同的聚类效果,所以它缺乏重复性和连续性。
和K均值类似的K中值算法,在计算过程中利用中值来计算聚类中心,使得局外点对它的影响大大减弱;但每一次循环计算中值矢量带来了计算速度的大大下降。
语法