深入理解机器学习聚类算法:K-means详解与实战应用

一、引言

在机器学习领域,聚类分析是一种重要的无监督学习方法,它能够将数据集中的样本划分为若干个不相交的子集,即“簇”。K-means聚类算法作为聚类分析中最经典和最常用的算法之一,凭借其简洁、高效的特点,受到了广泛的关注和应用。本文将深入探讨K-means聚类算法的原理、实现步骤、应用场景以及优化方法,为读者提供一个全面而深入的学习指南。

                 

二、K-means聚类算法原理

                    

K-means聚类算法的核心思想是将数据集中的n个样本划分为k个簇(k≤n),使得每个簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。算法的执行过程通常包括以下几个步骤:

2.1 初始化

首先,从数据集中随机选择k个样本作为初始的簇中心(也称为质心)。这k个质心的选择对于最终的聚类结果有很大的影响,因为不同的初始质心可能导致不同的聚类结果。

2.2 分配

对于数据集中的每个样本,计算其与k个簇中心的距离(通常采用欧氏距离),然后将该样本分配给距离其最近的簇中心所在的簇。这一步实现了对样本的初步分类。

2.3 更新

对于每个簇,计算其内部所有样本的均值(即质心),并将该均值作为新的簇中心。这一步是为了使每个簇的样本更加紧密地围绕在其质心周围,从而提高聚类的效果

2.4迭代

重复步骤分配更新,直到簇中心不再发生显著变化或达到预定的迭代次数。在迭代过程中,簇中心会不断地更新,使得每个簇的样本更加紧密地聚集在一起。

这种方法在理解和实现上都十分简单,但缺点却也十分明显,十分依赖于初始给定的聚类数目;同时随机初始化可能会生成不同的聚类效果,所以它缺乏重复性和连续性。

和K均值类似的K中值算法,在计算过程中利用中值来计算聚类中心,使得局外点对它的影响大大减弱;但每一次循环计算中值矢量带来了计算速度的大大下降。

语法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值