三维点云处理-1.2主成分分析PCA

本文详细介绍了主成分分析PCA的概念,包括数据点的投影、用途及数学基础,如SVD、谱定理和瑞利熵。PCA通过降维保留主要信息,用于数据可视化和分类。PCA步骤包括数据中心化、SVD分解和主向量寻找。PCA在人脸识别等领域有广泛应用,能有效减少所需样本数量。
摘要由CSDN通过智能技术生成

一、

主成分(PCA)概念:将数据点投影到有特征性的方向上,每个数据点在向量上的投影就是主成分。

                            

主成分用途:降维、法向量的估计、分类

二、

PCA的数学概念和物理意义

                          

两个向量内积(投影)                  列的线性组合         旋转、维度缩放、旋转(圆-椭圆)

1.SVD

2.Spectral theorem 谱定理(特征值)

3.Rayleigh quotients 瑞利熵

(分母是模)

① SVD物理意义理解:A最多能拉长或缩短x多少倍(旋转不会改变大小)

② 瑞利熵的证明:

第一行用谱定理

三、

PCA运作

主成分输入:一堆高维的点

主成分输出:一堆最主要的向量,最有代表性的高维的向量(高维点投影到某个方向上,方差要最大)

1.方差找最大的Z1

2.去掉属于Z1的成分,然后找剩下的主成分

3.过程可以重复很多遍找到我们想要的主向量

4.PCA具体步骤

步1:一堆点平均值设为0,减去平均值,关心的是方向所以中心点在哪里不重要。

步2:每个数据点Xi 点投影到Z上就是阿尔法这么多

步3:PCA是要找到方差(已经减掉了平均值),PCA的目的就是找到在某个方向上的最大值

发现跟瑞利熵很像(把XXT看成矩阵),故直接套用瑞利熵和谱定理:

为什么H=\left ( \sum ^{} \right )2而不是\sum,是因为用SVD再次做了分解:

可看到谱定理和SVD非常相关,为啥用SVD,因为可以继续求Z2

 

步1.把属于Z1的成分去掉,把每个数据点投影到Z1,再用数据点减掉,可以变成矩阵形式。

步2.重新用SVD和的形式,Ur旋转矩阵每一列都互相垂直可以消掉进一步简化。再把i从1变成2形式变出来了。

现在的矩阵是刨去了Z1主成分的矩阵,故新矩阵的第一列,原矩阵的第二列Ur

 放弃过程可以重复很多遍,直到找到我们想要。

5.PCA步骤总结:有一堆点

①减掉数据点的中心 ② 做这个矩阵的SVD,找到Ur(第一个主向量第一列,第二个主向量第二列以此类推)

物理角度看PCA:基底的置换,一堆高维数据点,怎么去找出一组基底是最具代表性的方向,第二组就垂直第一个基底的另一个基底

四、

主成分用途:

1.降维 (最大程度保存原始信息)

①降维N-L(Encoder)在N维,PCA找出L个主向量小于N,得到L个Z{Z1,Z2,Z3,Z4...},将Xi投影到每个Z上,得到Xi在每个主向量投影后的成分,所以一个N维点可以用L维a系数来代替。

②升维L-N(Decoder)(会损失数据)

 a是x在z上的投影,重新加起来就是了,会损失数据(除非L=N),但因为主成分精心挑选,损的不算多。

Eigenfaces 类似。图片/人脸识别 (与哪个系数最相近)比深度学习好在需要的图片数量很小

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值