PCA用到的矩阵知识
- svd奇异值分解
- 瑞利熵
- 谱定理
PCA
- input:n*d,n代表个数,d代表维度
- Output:主成分向量 ,principle vectors ,仅仅是一个向量,代表一个方向。主成分的个数k<=原始空间维度数d
Q&A
- 什么是最主要的成分?
点的投影后分布的方差最大的方向。(在该方向上的点云分布的最分散) - 怎么获取第二个主成分
去掉第一个主成分之后分布方差最大的方向
法向量估计
1. 原理
所谓法线估计实质上就是对每一个点,在其邻域内估计出一个平面。
我们知道,估计一个平面需要一个点和一个法向量,这个法向量就是我们要估计的法向量。这个点就是这一群邻域点(与该点自身)的平均值。
设平均点为c,法向量为n,问题就可以转换到寻求一个方向n使得所有邻域点在方向n上的投影点的分布最为集中,这样一个优化问题,
很显然,根据PCA分析可以知道,寻求一个方向n使得所有邻域点在方向n上的投影点的分布最为集中,也是就