PCA主成分分析估计点云法向量(原理)

PCA用到的矩阵知识

  • svd奇异值分解
  • 瑞利熵
  • 谱定理

PCA

  • input:n*d,n代表个数,d代表维度
  • Output:主成分向量 ,principle vectors ,仅仅是一个向量,代表一个方向。主成分的个数k<=原始空间维度数d

Q&A

  • 什么是最主要的成分?
    点的投影后分布的方差最大的方向。(在该方向上的点云分布的最分散)
  • 怎么获取第二个主成分
    去掉第一个主成分之后分布方差最大的方向

法向量估计

1. 原理

所谓法线估计实质上就是对每一个点,在其邻域内估计出一个平面。

我们知道,估计一个平面需要一个点和一个法向量,这个法向量就是我们要估计的法向量。这个点就是这一群邻域点(与该点自身)的平均值。

设平均点为c,法向量为n,问题就可以转换到寻求一个方向n使得所有邻域点在方向n上的投影点的分布最为集中,这样一个优化问题,

在这里插入图片描述

很显然,根据PCA分析可以知道,寻求一个方向n使得所有邻域点在方向n上的投影点的分布最为集中,也是就

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tech沉思录

点赞加投币,感谢您的资瓷~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值