点云的基本特征和描述,PCA主成分分析

一、点云特征的基本要求

在这里插入图片描述http://www.pointclouds.org/documentation/tutorials/

二、点云特征的分类

在这里插入图片描述在这里插入图片描述https://blog.csdn.net/shaozhenghan/article/details/81346585

三、点云的基本特征描述

  1. 二维情况
    在这里插入图片描述
  2. 三维情况
    在这里插入图片描述

四、PCA(Princile Components Analysis)主成分分析

4.1 谱定理(Spectral Theorem)

在这里插入图片描述

4.2 Rayleigh Quotients

在这里插入图片描述

4.3 SVD分解的物理意义

在这里插入图片描述
矩阵M经过SVD分解,分解成两个正交矩阵UV和对角阵 σ \sigma σ,因此一个高维向量乘以M矩阵就相当于对向量在高维空间进行了旋转和拉伸。

在这里插入图片描述

  • 使用的核心算法是矩阵的特征值分解。
  • 基于矩阵特征值或者SVD分解求:
  1. 法向量方向
  2. 对应(等效)椭球体的最短轴方向
  3. 对应点云坐标的协方差矩阵的最小特征值对应的特征向量

在这里插入图片描述

  • 数据集在某个基上的投影值(也是在这个基上的坐标值)越分散,方差越大,这个基保留的信息也就越多
  • 信息量保存能力最大的基向量一定是的协方差矩阵的特征向量,并且这个特征向量保存的信息量就是它对应的特征值.

4.4 点云的PCA步骤

  1. 找到点 x i x_i xi周围半径 R R R范围内的所有点 X X X,计算均值:
    x ˉ = 1 n ∑ i = 1 N x i \bar{x}=\frac{1}{n} \sum_{i=1}^{N} x_{i} xˉ=n1i=1Nxi
  2. 计算样本方差:
    S 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} S2=n11i=1n(xixˉ)2
  3. 计算样本协方差:

Cov ⁡ ( X , X ) = E [ ( X − E ( X ) ) T ( X − E ( X ) ) ] = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) T ( x i − x ˉ ) ) \begin{array}{l} \operatorname{Cov}(X, X)=E[(X-E(X))^T(X-E(X))] \\ \quad=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^T(x_i-\bar{x}))\end{array} Cov(X,X)=E[(XE(X))T(XE(X))]=n11i=1n(xixˉ)T(xixˉ))

  1. 计算协方差矩阵:
    1 n ( X − x ˉ ) T ( X − x ˉ ) \frac{1}{n}(X-\bar{x})^T(X-\bar{x}) n1(Xxˉ)T(Xxˉ)

  2. 特征分解:
    V ( λ 1 λ 2 λ 3 ) V T V\left(\begin{array}{ccc} \lambda_{1} & \\ & \lambda_{2} & \\ && \lambda_{3} \end{array}\right) V^{T} Vλ1λ2λ3VT
    λ 1 ≥ λ 2 ≥ λ 3 ≥ 0 \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq 0 λ1λ2λ30
    在这里插入图片描述在这里插入图片描述

4.5 应用:PCA – Dimensionality Reduction

在这里插入图片描述在这里插入图片描述

打赏

码字不易,如果对您有帮助,就打赏一下吧O(∩_∩)O

支付宝

微信

  • 19
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
点云PCA主成分分析是一种用于分析和降维点云数据的方法。点云是由一系列的离散点组成的三维数据,常见于激光扫描、三维重建等领域。 主成分分析PCA)是一种常用的统计学方法,用于寻找数据的主要变化方向,以及通过投影到这些方向来实现数据的降维。在点云中,PCA可以帮助我们发现点云数据中的主要形状和方向趋势。 首先,我们需要将点云数据转化为一个矩阵形式,其中每一列代表一个特征维度(例如,点的x、y、z坐标),每一行代表一个样本点。然后,通过计算这个矩阵的协方差矩阵,我们可以得到数据在不同维度上的关联性。 接下来,我们可以通过对协方差矩阵进行特征值分解,得到一组特征值和对应的特征向量。这些特征向量代表了点云数据中最主要的变化方向,而特征值则表示了这些方向的重要程度。 根据特征值的大小,我们可以选择保留最主要的几个特征向量,进行数据的降维。通过将点云数据投影到这些特征向量所构成的子空间中,我们可以达到保留数据主要形状和方向信息的目的。 点云PCA主成分分析在很多领域都得到了广泛应用。例如,在三维重建中,可以通过分析和提取点云的主要形状特征,来识别和重建物体的三维模型。在机器人感知和自动驾驶中,可以利用PCA来提取点云数据中的主要运动和路径信息,以便进行环境感知和路径规划等任务。 总之,点云PCA主成分分析是一种有效的点云数据分析和降维方法,可以帮助我们理解和利用点云数据中的主要特征和信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值