十大算法--logistic回归

这篇博客详细介绍了Logistic回归中的关键概念,包括Sigmoid函数的特性及其作为分类器的作用,梯度法如何寻找函数最值,特别是梯度上升算法在Logistic回归中的应用。通过代码示例展示了如何实现和优化Logistic回归的权重更新过程。
摘要由CSDN通过智能技术生成

1.sigmoid函数

这里写图片描述
当x为0时,Sigmoid函数值为0.5。随着x的增大,对应的sigmiod值将逼近于1; 而随着x的减小,Sigmoid值将逼近于0。任何sigmoid值大于0.5的数据,都被分类为1类,任何sigmoid值小于0.5的数据,都被分类为0类。以下是sigmoid函数在两种不同尺度的坐标系下的图解:
这里写图片描述
可以看出来,只要横坐标的尺度足够大,在x=0处,sigmoid函数看起来就像个阶跃函数,具有比较好的分类特性。

2.梯度法求函数最值

所谓的梯度其实就是某个方向唉,沿着梯度的方向,可以最快寻找到函数的最值。其中梯度上升方向是最快找到函数最大值的方向,而梯度下降则是最快找到函数最小值的方向。不懂梯度的建议再翻一翻高数的课本!这里直接给出梯度法更新逻辑回归中权重的迭代公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值