1.sigmoid函数
当x为0时,Sigmoid函数值为0.5。随着x的增大,对应的sigmiod值将逼近于1; 而随着x的减小,Sigmoid值将逼近于0。任何sigmoid值大于0.5的数据,都被分类为1类,任何sigmoid值小于0.5的数据,都被分类为0类。以下是sigmoid函数在两种不同尺度的坐标系下的图解:
可以看出来,只要横坐标的尺度足够大,在x=0处,sigmoid函数看起来就像个阶跃函数,具有比较好的分类特性。
2.梯度法求函数最值
所谓的梯度其实就是某个方向唉,沿着梯度的方向,可以最快寻找到函数的最值。其中梯度上升方向是最快找到函数最大值的方向,而梯度下降则是最快找到函数最小值的方向。不懂梯度的建议再翻一翻高数的课本!这里直接给出梯度法更新逻辑回归中权重的迭代公式: