如何利用大模型将语音转文字

如何利用大模型将语音转文字

OpenAI支持将语音转文字,调用接口可以直接将语音文件转为文字。

这个例子是调用了一个私有部署的Belle-whisper-large-v2-zh,使用OpenAI的客户端。

测试代码如下:

from openai import OpenAI

client = OpenAI(
    base_url='http://127.0.0.1:9922/v1',
    api_key='EMPTY'
)

models = client.models.list()

print(models)

可以从下面的输出中,确认大模型的名称。

SyncPage[Model](data=[Model(id='Belle-whisper-large-v2-zh', created=0, object='model', 
owned_by='xinference', model_type='audio', address='0.0.0.0:36445', accelerators=['0'], 
model_name='Belle-whisper-large-v2-zh', model_family='whisper', model_revision='ec5bd5d78598545b7585814edde86dac2002b5b9', replica=1),
 Model(id='bge-reranker-large', created=0, object='model', owned_by='xinference', 
 model_type='rerank', address='0.0.0.0:46201', accelerators=['0'], type='normal', 
 model_name='bge-reranker-large', language=['en', 'zh'], model_revision='v0.0.1', replica=1), Model(id='bge-base-zh-v1.5', created=0, object='model', owned_by='xinference', model_type='embedding', 
 address='0.0.0.0:40537', accelerators=['0'], model_name='bge-base-zh-v1.5', dimensions=768, 
 max_tokens=512, language=['zh'], model_revision='v0.0.1', replica=1)], object='list')

选择一个声音文件,将文件内容提交给大模型。

file_name = r'C:\Temp\四年级英语听力.mp3'

audio_file = open(file_name, 'rb')

transcription = client.audio.transcriptions.create(
    model="Belle-whisper-large-v2-zh",
    file=audio_file
)

print(transcription.text)

输出结果为:

四年级英语听力部分ALookListenandChoose听音选图 writing he is a famous writer to Galway's brother is 
a policeman Galway's brother is a policeman three this is my classmate Li Yan she's good at reading books 
this is my classmate Li Yan she is good at reading books My uncle is a taxi driver. He drives well
听录音填写 I'm eleven She is twelve We are in the same class Her father is a teacher Her mother i
s a TV reporter of class two grade five.听录音用钩叉判断 I'm a new student I'm in class 2 five. 
Here is a picture of my family. This is my father. He's a writer. This is my mother. She's a singer. 
The girl is my sister. The boy is me. We love our father and mother and they love us. 
We are a happy family听力结束请同学们继续答题

看上去还不错。

### 大型语言模型在语音到文本换中的应用 大型语言模型(LLM)作为一种强大的工具,在语音到文本换技术中扮演着至关重要的角色。尽管 LLM 主要专注于基于文本的任务,但在与其他组件协同工作时,这些模型可以通过提供上下文理解来增强语音识别系统的性能。 #### 集成方法 为了实现高效的语音到文本换,通常会采用一个多阶段的方法: 1. **前端处理**:接收原始音频流并执行必要的预处理操作,如降噪、分帧等。 2. **声学建模**:通过神经网络或其他机器学习算法将声音特征映射为音素概率分布。 3. **语言解码器**:利用大型语言模型预测最有可能的词序列给定一系列音素或字符级别的输出[^4]。 在这个过程中,LLMs 可以为最后一步——即从潜在的语言单位推断实际词语的过程中带来显著改进。由于其卓越的能力去捕捉复杂的句法结构和语义关系,使得最终产生的录更加准确自然。 此外,当涉及到特定领域内的专业术语或者口语化表达方式时,预先训练好的大规模参数量级下的 LLMs 能够更好地适应不同类型的输入源,并保持较高的准确性水平。 ```python import whisper # 假设这是一个假想库,代表先进的语音处理框架 def transcribe_audio(audio_file_path, llm_model): """ 使用指定的大规模语言模型对音频文件进行写 参数: audio_file_path (str): 输入音频路径 llm_model : 已加载的大规模语言模型实例 返回: str: 写的文本结果 """ # 加载音频数据 audio_data = load_audio_from_file(audio_file_path) # 应用前端处理与声学建模... processed_features = preprocess_and_extract_features(audio_data) # 利用LMM辅助解码过程得到最优的文字表示 transcription_result = decode_with_llm(processed_features, llm_model) return transcription_result # 示例调用函数 transcribed_text = transcribe_audio('example.wav', some_pretrained_large_language_model) print(transcribed_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值