OpenCVSharp 笑脸检测

利用Harra Cascade 分类器进行人脸检测和进一步进行笑脸检测,采用训练好的分类模型,在OpenCVSharp里变得非常简单,两三条语句就搞定了:

 CascadeClassifier face_cascade = new CascadeClassifier(facemodelfile);  //创建一个人脸分类器
 face_cascade .DetectMultiScale(image);   //检测人脸

 CascadeClassifier smile_cascade = new CascadeClassifier(smilemodelfile);  //创建一个笑脸分类器

 smile_cascade.DetectMultiScale(image);   //检测笑脸

 

 下面是完整的代码:

using System;
using System.Drawing;
using System.Windows.Forms;
using OpenCvSharp;

namespace SmileDetect
{
    public partial class Form1 : Form
    {
        string filename = "";
        public Form1()
        {
            InitializeComponent();
        }

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = "图片文件|*.jpg;*.png;*.bmp;*.gif";
            ofd.CheckFileExists = true;
            if(ofd.ShowDialog()== DialogResult.OK)
            {
                filename = ofd.FileName;
                pictureBox1.Image = DetectSmile(filename);
            }
        }

        private Bitmap DetectSmile(string filename)
        {
            double scaleFactor = Convert.ToDouble(textBox1.Text);
            if (scaleFactor <= 1.00)
                scaleFactor = 1.01;
            int miniNeighbors = Convert.ToInt16(textBox2.Text);

            string facemodel = @"D:\OpenCV4.5\build\etc\haarcascades\haarcascade_frontalface_default.xml";            
            string smilemodel = @"D:\OpenCV4.5\build\etc\haarcascades\haarcascade_smile.xml";

            CascadeClassifier face_cascade = new CascadeClassifier(facemodel);
            CascadeClassifier eye_cascade = new CascadeClassifier(eyemodel);
            CascadeClassifier smile_cascade = new CascadeClassifier(smilemodel);

            Mat input = new Mat(filename, ImreadModes.Color);
            Mat grayInput = new Mat();
            Cv2.CvtColor(input, grayInput, ColorConversionCodes.BGR2GRAY);

            Rect[] faces = face_cascade.DetectMultiScale(input, 1.3, 5);

            for (int i = 0; i < faces.Length; i++)
            {
                Cv2.Rectangle(input, faces[i], Scalar.Red,2);
                Mat faceMat = grayInput[faces[i]];
                Mat faceMatColor = input[faces[i]];
                Rect[] smiles = smile_cascade.DetectMultiScale(faceMat, scaleFactor, miniNeighbors);
                for (int j = 0; j < smiles.Length; j++)
                {
                    Cv2.Rectangle(faceMatColor, smiles[j], Scalar.Green,2);
                }
            }
            return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(input);
        }

        private void button2_Click(object sender, EventArgs e)
        {

            if(filename.Length>0)
            {
                if(pictureBox1.Image != null)
                {
                    pictureBox1.Image = DetectSmile(filename);
                }
            }
        }
    }
}

模型文件可以在这里下载:https://github.com/opencv/opencv/tree/master/data/haarcascades

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值