实际电容的频率特性

理想电容的阻抗 Z = 1 j ω C Z=\frac{1}{j\omega C} Z=C1
实际的电容器却没有这么简单,首先必须考虑电容的损耗(电阻损耗和介质损耗等),其次在高频端,电容的引脚和内部的导体走线的电感不能忽视。应该用以下的电容等效模型来分析频率特性。
电容等效模型
等效串联电阻 ESR 阻值为 Rs,等效串联电感 ESL 电感为 Ls

计算这个等效电路的阻抗为
Z = R s + R 1 j ω C R + 1 j ω C + j ω L s Z = R_{s} + \frac{R \frac{1}{j\omega C}}{R+\frac{1}{j\omega C}} + j \omega L_s Z=Rs+R+C1RC1+Ls
绝缘电阻 R 一般非常大,这里暂时忽略,对结论影响不大。
Z = R s + 1 j ω C + j ω L s Z = R_{s} + \frac{1}{j\omega C} + j \omega L_s Z=Rs+C1+Ls

绘出复阻抗与频率的关系图:
实际电容的频率特性
在低频段,电容呈容性,阻抗与频率成反比例关系;
在高频段,电容呈感性,阻抗与频率成正比例关系;
在两段的转折点,正是电容与串联电感谐振处,容抗与感抗刚好抵消,此时电容器的阻抗等于纯电阻 Rs,即 ESR

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值