理想电容的阻抗
Z
=
1
j
ω
C
Z=\frac{1}{j\omega C}
Z=jωC1
实际的电容器却没有这么简单,首先必须考虑电容的损耗(电阻损耗和介质损耗等),其次在高频端,电容的引脚和内部的导体走线的电感不能忽视。应该用以下的电容等效模型来分析频率特性。
等效串联电阻 ESR 阻值为 Rs,等效串联电感 ESL 电感为 Ls
计算这个等效电路的阻抗为
Z
=
R
s
+
R
1
j
ω
C
R
+
1
j
ω
C
+
j
ω
L
s
Z = R_{s} + \frac{R \frac{1}{j\omega C}}{R+\frac{1}{j\omega C}} + j \omega L_s
Z=Rs+R+jωC1RjωC1+jωLs
绝缘电阻 R 一般非常大,这里暂时忽略,对结论影响不大。
Z
=
R
s
+
1
j
ω
C
+
j
ω
L
s
Z = R_{s} + \frac{1}{j\omega C} + j \omega L_s
Z=Rs+jωC1+jωLs
绘出复阻抗与频率的关系图:
在低频段,电容呈容性,阻抗与频率成反比例关系;
在高频段,电容呈感性,阻抗与频率成正比例关系;
在两段的转折点,正是电容与串联电感谐振处,容抗与感抗刚好抵消,此时电容器的阻抗等于纯电阻 Rs,即 ESR