第四章 Markov链(2)
1.状态空间分解
可达:对于状态空间为 E \mathcal E E的Markov链 X \boldsymbol X X,对于状态 i ≠ j ∈ E i\ne j\in \mathcal E i=j∈E,如果存在 n ≥ 1 n\ge 1 n≥1使得 p i j ( n ) > 0 p_{ij}^{(n)}>0 pij(n)>0,则称状态 i i i可到达 j j j,记作 i → j i\to j i→j。可达性即两个状态之间能够通过有限步骤到达。
互达(互通):如果 i → j i\to j i→j且 j → i j\to i j→i,则称状态 i i i和 j j j互通,记作 i ↔ j i\leftrightarrow j i↔j。互通是等价关系,满足对称性、传递性、自反性。
- 根据等价关系,可以将状态空间 E \mathcal E E分为若干个互达等价类。
- 显然,不同互达等价类之间的任意两个状态都是不互达的,这意味着Markov在一个互达等价类中永远无法到达其他互达等价类,只能永远待在那个类中。
- 如果任意两个状态互达,也就是整个Markov链只有一个互达等价类,那么称这个Markov链是不可约的。
- 闭集:对于状态空间的子集 S ⊂ E S\subset \mathcal E S⊂E,如果从 S S S中任何状态出发,都无法到达 E ∖ S \mathcal E\setminus S E∖S中的状态,则称 S S S为闭集,即 ∀ i ∈ S , j ∈ E ∖ S , i ↛ j \forall i\in S, j\in \mathcal E\setminus S,i\nrightarrow j ∀i∈S,j∈E∖S,i↛j。 ∅ \empty ∅和 S S S是显然的闭集。
- 吸收态:对于某种状态 i i i而言,到达次状态后永不离开的,称为吸收态。即 p i i = 1 p_{ii}=1 pii=1。
周期:令 gcd \gcd gcd为集合内元素的最大公因子,则定义状态 i i i的周期为 d i = gcd { n ≥ 1 : p i i ( n ) > 0 } d_i=\gcd\{n\ge1:p_{ii}^{(n)}>0\} di=gcd{n≥1:pii(n)>0},也就是状态 i i i能返回自身所经过步数的最大公因数。如果 d i = 1 d_i=1 di=1,则称状态 i i i是非周期的。
- 假设 d i = d d_i=d di=d,那么存在一个自然数 m m m使得 ∀ n ≥ m , p i i ( n d ) > 0 \forall n\ge m,p_{ii}^{(nd)}>0 ∀n≥m,pii(nd)>0。
- 互达等价类中的元素拥有共同的周期,即 i ↔ j ⇒ d i = d j i\leftrightarrow j\Rightarrow d_i=d_j i↔j⇒di=dj。
首中时:给定状态 j ∈ E j\in \mathcal E j∈E,令 T j = inf { n ≥ 1 : X n = j } T_j=\inf\{n\ge1:X_n=j\} Tj=inf{n≥1:Xn=j},且约定 inf ∅ = ∞ \inf \empty=\infty inf∅=∞。这样,当 X 0 = j X_0=j X0=j时, T j T_j Tj表示Markov链首次回到状态 j j j的时刻;当 X 0 = i ≠ j X_0=i\ne j X0=i=j时, T j T_j Tj表示Markov链首次到达 j j j的时刻。
常返:如果 P ( T j < ∞ ∣ X 0 = j ) = 1 P(T_j<\infty |X_0=j)=1 P(Tj<∞∣X0=j)=1,则称 j j j是常返状态;若 P ( T j < ∞ ∣ X 0 = j ) < 1 P(T_j<\infty |X_0=j)<1 P(Tj<∞∣X0=j)<1,则称 j j j是顺时状态。若 E ( T j ∣ X 0 = j ) < ∞ E(T_j|X_0=j)<\infty E(Tj∣X0=j)<∞,则称 j j j是正常返状态;若 E ( T j ∣ X 0 = j ) = ∞ E(T_j|X_0=j)=\infty E(Tj∣X0=j)=∞,则称 j j j是零常返状态。
- 对于同一个互达等价类中的状态,它们有共同的常返性。若 i ↔ j i\leftrightarrow j i↔j,则 i i i是瞬时态当且仅当 j j j是瞬时态, i i i是常返态当且仅当 j j j是常返态, i i i正常返当且仅当 j j j正常返。
- 对于常返状态 i ∈ E i\in \mathcal E i∈E,其互达等价类为 C i = { j ∈ E : i ↔ j } C_i=\{j\in \mathcal E:i\leftrightarrow j\} Ci={j∈E:i↔j},则 C i C_i Ci是闭集。
- 典型的零常返态:对称随机游动中 E = Z \mathcal E=\Z E=Z,状态 0 0 0是一个零常返状态。
状态空间分解:Markov链的状态空间
E
\mathcal E
E可以分解成若干个互不相交的状态空间为
E
=
C
1
+
C
2
+
⋯
+
C
M
+
N
,
M
≤
∞
\mathcal E=C_1+C_2+\cdots+C_M+\mathcal N, M\le \infty
E=C1+C2+⋯+CM+N,M≤∞
其中
C
i
C_i
Ci表示常返状态等价类,
N
\mathcal N
N表示瞬时状态的全体,不同的
C
i
C_i
Ci是互不相交的闭集。
2.常返与瞬时
首中时:代表从某个状态出发,经过一定步数(不能是0步)后来到
j
j
j状态花费的最小步数,由此定义必有
T
j
≥
1
T_j\ge1
Tj≥1,定义式为:
T
j
=
inf
{
n
≥
1
:
N
n
=
j
}
T_j=\inf\{n\ge1:N_n=j\}
Tj=inf{n≥1:Nn=j}
n
n
n步首次返回概率:令
f
j
j
(
n
)
=
P
(
T
j
=
n
∣
X
0
=
j
)
f_{jj}^{(n)}=P(T_j=n|X_0=j)
fjj(n)=P(Tj=n∣X0=j),即从状态
j
j
j出发经过
n
n
n步才第一次返回
j
j
j状态的概率。由于
T
j
T_j
Tj是最小首次返回时间,故
f
j
j
(
n
)
=
P
(
T
j
=
n
∣
X
0
=
j
)
=
P
(
X
n
=
j
,
X
1
⋯
,
X
n
−
1
≠
j
∣
X
0
=
j
)
f_{jj}^{(n)}=P(T_j=n|X_0=j)=P(X_n=j,X_1\cdots,X_{n-1}\ne j|X_0=j)
fjj(n)=P(Tj=n∣X0=j)=P(Xn=j,X1⋯,Xn−1=j∣X0=j)
因此可以换一种方式定义常返:
P
(
T
j
<
∞
∣
X
0
=
j
)
=
∑
n
=
1
∞
P
(
T
j
=
n
∣
X
0
=
j
)
=
∑
n
=
1
∞
f
j
j
(
n
)
=
1
\begin{aligned} &P(T_j<\infty |X_0=j)\\ =&\sum_{n=1}^\infty P(T_j=n|X_0=j)\\ =&\sum_{n=1}^\infty f_{jj}^{(n)}=1\\ \end{aligned}
==P(Tj<∞∣X0=j)n=1∑∞P(Tj=n∣X0=j)n=1∑∞fjj(n)=1
这样常返可以表现为
∑
n
=
1
∞
f
j
j
(
n
)
=
1
\sum_{n=1}^\infty f_{jj}^{(n)}=1
∑n=1∞fjj(n)=1,瞬时可以表现为
∑
n
=
1
∞
f
j
j
(
n
)
<
1
\sum_{n=1}^\infty f_{jj}^{(n)}<1
∑n=1∞fjj(n)<1。同时定义常返状态
j
j
j的平均返回时为
τ
j
=
E
(
T
j
∣
X
0
=
j
)
=
∑
n
=
1
∞
n
f
j
j
(
n
)
\tau_j=E(T_j|X_0=j)=\sum_{n=1}^\infty nf_{jj}^{(n)}
τj=E(Tj∣X0=j)=∑n=1∞nfjj(n),这样正常返即
τ
j
<
∞
\tau_j<\infty
τj<∞,零常返即
τ
j
=
∞
\tau_j=\infty
τj=∞。
- 因此得到通过 n n n步首次返回概率 f j j ( n ) f_{jj}^{(n)} fjj(n)验证常返性的方法:对于状态 j j j,对每个步数 n ≥ 1 n\ge 1 n≥1求 f i i ( n ) f_{ii}^{(n)} fii(n),根据 ∑ n = 1 ∞ f j j ( n ) \sum_{n=1}^\infty f_{jj}^{(n)} ∑n=1∞fjj(n)和 ∑ n = 1 ∞ n f j j ( n ) \sum_{n=1}^\infty nf_{jj}^{(n)} ∑n=1∞nfjj(n)来判断状态 j j j的常返性。
- 这种方法适用于求 f j j ( n ) f_{jj}^{(n)} fjj(n)简单的Markov链,对于复杂的Markov链并不适用。
由于
p
j
j
(
n
)
p_{jj}^{(n)}
pjj(n)相对于
f
j
j
(
n
)
f_{jj}^{(n)}
fjj(n)没有首次返回的要求,可以得到它们之间的联系以及与常返状态的联系:
p
j
j
(
n
)
=
P
(
X
n
=
j
∣
X
0
=
j
)
=
∑
k
=
1
n
P
(
T
j
=
k
,
X
n
=
j
∣
X
0
=
j
)
=
∑
k
=
1
n
P
(
T
j
=
k
∣
X
0
=
j
)
P
(
X
n
=
j
∣
X
k
=
j
)
=
∑
n
=
1
k
f
j
j
(
k
)
p
j
j
(
n
−
k
)
∑
n
=
1
∞
p
j
j
(
n
)
=
∑
n
=
1
∞
∑
k
=
1
n
f
j
j
(
k
)
p
j
j
(
n
−
k
)
=
∑
k
=
1
∞
∑
n
=
k
∞
f
j
j
(
k
)
p
j
j
(
n
−
k
)
=
∑
k
=
1
∞
f
j
j
(
k
)
∑
n
=
k
∞
p
j
j
(
n
−
k
)
=
∑
k
=
1
∞
f
j
j
(
k
)
∑
n
=
0
∞
p
j
j
(
n
)
=
∑
k
=
1
∞
f
j
j
(
k
)
(
1
+
∑
n
=
1
∞
p
j
j
(
n
)
)
\begin{aligned} p_{jj}^{(n)}=&P(X_n=j|X_0=j)\\ =&\sum_{k=1}^n P(T_j=k,X_n=j|X_0=j)\\ =&\sum_{k=1}^n P(T_j=k|X_0=j)P(X_n=j|X_k=j)\\ =&\sum_{n=1}^k f_{jj}^{(k)}p_{jj}^{(n-k)}\\ \quad \\ \sum_{n=1}^\infty p_{jj}^{(n)}=&\sum_{n=1}^\infty \sum_{k=1}^n f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^\infty \sum_{n=k}^\infty f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^\infty f_{jj}^{(k)}\sum_{n=k}^\infty p_{jj}^{(n-k)}\\ =&\sum_{k=1}^\infty f_{jj}^{(k)}\sum_{n=0}^\infty p_{jj}^{(n)}=\sum_{k=1}^\infty f_{jj}^{(k)}\left(1+\sum_{n=1}^\infty p_{jj}^{(n)}\right)\\ \end{aligned}
pjj(n)====n=1∑∞pjj(n)====P(Xn=j∣X0=j)k=1∑nP(Tj=k,Xn=j∣X0=j)k=1∑nP(Tj=k∣X0=j)P(Xn=j∣Xk=j)n=1∑kfjj(k)pjj(n−k)n=1∑∞k=1∑nfjj(k)pjj(n−k)k=1∑∞n=k∑∞fjj(k)pjj(n−k)k=1∑∞fjj(k)n=k∑∞pjj(n−k)k=1∑∞fjj(k)n=0∑∞pjj(n)=k=1∑∞fjj(k)(1+n=1∑∞pjj(n))
如果
∑
n
=
1
∞
p
j
j
(
n
)
<
∞
\sum_{n=1}^\infty p_{jj}^{(n)}<\infty
∑n=1∞pjj(n)<∞,则显然有
∑
k
=
1
∞
f
j
j
(
k
)
<
1
\sum_{k=1}^\infty f_{jj}^{(k)}<1
∑k=1∞fjj(k)<1,说明状态
j
j
j瞬时;如果
∑
n
=
1
∞
p
j
j
(
n
)
=
∞
\sum_{n=1}^\infty p_{jj}^{(n)}=\infty
∑n=1∞pjj(n)=∞,则
∀
M
≥
1
\forall M\ge 1
∀M≥1,
∑
n
=
1
M
p
j
j
(
n
)
=
∑
n
=
1
M
∑
k
=
1
n
f
j
j
(
k
)
p
j
j
(
n
−
k
)
=
∑
k
=
1
M
∑
n
=
k
M
f
j
j
(
k
)
p
j
j
(
n
−
k
)
=
∑
k
=
1
M
f
j
j
(
k
)
∑
n
=
k
M
p
j
j
(
n
−
k
)
=
∑
k
=
1
M
f
j
j
(
k
)
∑
n
=
0
M
−
k
p
j
j
(
n
)
≤
∑
k
=
1
M
f
j
j
(
k
)
(
1
+
∑
n
=
1
M
p
j
j
(
n
)
)
∑
k
=
1
M
f
j
j
(
k
)
≥
∑
n
=
1
M
p
j
j
(
n
)
1
+
∑
n
=
1
M
p
j
j
(
n
)
\begin{aligned} \sum_{n=1}^M p_{jj}^{(n)}=&\sum_{n=1}^M \sum_{k=1}^n f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^M \sum_{n=k}^M f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^M f_{jj}^{(k)}\sum_{n=k}^M p_{jj}^{(n-k)}\\ =&\sum_{k=1}^M f_{jj}^{(k)}\sum_{n=0}^{M-k} p_{jj}^{(n)}\le \sum_{k=1}^M f_{jj}^{(k)}\left(1+\sum_{n=1}^M p_{jj}^{(n)}\right)\\ \quad \\ \sum_{k=1}^M f_{jj}^{(k)}\ge&\frac{\sum\limits_{n=1}^M p_{jj}^{(n)}}{1+\sum\limits_{n=1}^M p_{jj}^{(n)}} \end{aligned}
n=1∑Mpjj(n)====k=1∑Mfjj(k)≥n=1∑Mk=1∑nfjj(k)pjj(n−k)k=1∑Mn=k∑Mfjj(k)pjj(n−k)k=1∑Mfjj(k)n=k∑Mpjj(n−k)k=1∑Mfjj(k)n=0∑M−kpjj(n)≤k=1∑Mfjj(k)(1+n=1∑Mpjj(n))1+n=1∑Mpjj(n)n=1∑Mpjj(n)
令
M
→
∞
M\to \infty
M→∞,得到
∑
k
=
1
∞
f
j
j
(
k
)
≥
1
\sum_{k=1}^\infty f_{jj}^{(k)}\ge 1
∑k=1∞fjj(k)≥1,故
∑
k
=
1
∞
f
j
j
(
k
)
=
1
\sum_{k=1}^\infty f_{jj}^{(k)}=1
∑k=1∞fjj(k)=1,得到
j
j
j状态正常返。综合以上,可以发现
j
j
j常返等价于
∑
n
=
1
∞
p
j
j
(
n
)
=
∞
\sum_{n=1}^\infty p_{jj}^{(n)}=\infty
∑n=1∞pjj(n)=∞,瞬时等价于
∑
n
=
1
∞
p
j
j
(
n
)
<
∞
\sum_{n=1}^\infty p_{jj}^{(n)}<\infty
∑n=1∞pjj(n)<∞。
由此可以推出相关定理:
- 如果 j j j是瞬时或零常返状态,那么 lim n → ∞ p j j ( n ) = 0 \lim\limits_{n\to \infty}p_{jj}^{(n)}=0 n→∞limpjj(n)=0;
- 如果 j j j是周期为 d j d_j dj且正常返的,那么 lim n → ∞ p j j ( n d j ) = d j τ j \lim\limits_{n\to \infty} p_{jj}^{(nd_j)}=\frac {d_j}{\tau_j} n→∞limpjj(ndj)=τjdj,对于非周期状态则有 lim n → ∞ p j j ( n ) = 1 τ j \lim\limits_{n\to \infty }p_{jj}^{(n)}=\frac1 {\tau_j} n→∞limpjj(n)=τj1。
- 由此得到通过 n n n步到达概率 p j j ( n ) p_{jj}^{(n)} pjj(n)判断状态常返性的方法:对于状态 j j j, ∑ n = 1 ∞ p j j ( n ) = ∞ \sum_{n=1}^\infty p_{jj}^{(n)}=\infty ∑n=1∞pjj(n)=∞可推出常返, ∑ n = 1 ∞ p j j ( n ) < ∞ \sum_{n=1}^\infty p_{jj}^{(n)} <\infty ∑n=1∞pjj(n)<∞可推出瞬时, lim n → ∞ p j j ( n ) \lim\limits_{n \to \infty}p_{jj}^{(n)} n→∞limpjj(n)可推出平均首中时 τ j \tau_j τj,特别地如果 lim n → ∞ p j j ( n ) \lim\limits_{n\to \infty}p_{jj}^{(n)} n→∞limpjj(n)则说明是瞬时或零常返。
- 如果 j j j是零常返或瞬时状态,那么对任意状态 i i i,有 lim n → ∞ p i j ( n ) = 0 \lim\limits_{n\to \infty }p_{ij}^{(n)}=0 n→∞limpij(n)=0;
- 如果 j j j是非周期正常返的,那么对任意状态 i i i,有 lim n → ∞ p i j ( n ) = f i j τ j \lim\limits_{n\to \infty }p_{ij}^{(n)}=\frac{f_{ij}}{\tau_j} n→∞limpij(n)=τjfij,这里 f i j f_{ij} fij是从 i i i出发可达 j j j的概率。
有限状态Markov链一定存在正常返状态。若每个状态都是瞬时或零常返的,那么有
lim
n
→
∞
p
i
j
(
n
)
=
1
1
=
lim
n
→
∞
∑
j
=
1
N
p
i
j
(
n
)
=
∑
j
=
1
N
lim
n
→
∞
p
i
j
(
n
)
=
0
,
矛
盾
\lim\limits_{n\to \infty }p_{ij}^{(n)}=1\\ 1=\lim_{n\to \infty }\sum_{j=1}^Np_{ij}^{(n)}=\sum_{j=1}^N \lim_{n\to \infty }p_{ij}^{(n)}=0,矛盾
n→∞limpij(n)=11=n→∞limj=1∑Npij(n)=j=1∑Nn→∞limpij(n)=0,矛盾
现定义
M
j
M_j
Mj为Markov链运行过程中,处于状态
j
j
j的总次数,即
M
j
=
♯
{
n
≥
0
:
X
n
=
j
}
M_j=\sharp\{n\ge 0:X_n=j\}
Mj=♯{n≥0:Xn=j}
有相关定理如下:
-
如果 j j j是常返状态,那么 P ( M j = ∞ ∣ X 0 = j ) = 1 P(M_j=\infty |X_0=j)=1 P(Mj=∞∣X0=j)=1;
-
如果 j j j是瞬时状态,那么 P ( M j < ∞ ∣ X 0 = j ) = 1 P(M_j<\infty |X_0=j)=1 P(Mj<∞∣X0=j)=1。在这种情况下,令
ρ = P ( T j < ∞ ∣ X 0 = j ) = ∑ k = 1 ∞ f j j ( k ) < 1 \rho =P(T_j<\infty |X_0=j)=\sum_{k=1}^\infty f_{jj}^{(k)}<1 ρ=P(Tj<∞∣X0=j)=k=1∑∞fjj(k)<1
则有 M j M_j Mj服从参数为 1 − ρ 1-\rho 1−ρ的几何分布, P ( M j = n ∣ X 0 = j ) = ( 1 − ρ ) ρ n − 1 P(M_j=n|X_0=j)=(1-\rho)\rho^{n-1} P(Mj=n∣X0=j)=(1−ρ)ρn−1,这代表从状态 j j j出发还能回到状态 j j j的概率是 ρ \rho ρ,一旦以概率 1 − ρ 1-\rho 1−ρ进入了不可返回 j j j的状态则 M j M_j Mj将不再增长,每次在 j j j状态进行一次两点分布抽样。
现在对以上提到的定义做一些区分:
- T j T_j Tj:从状态 i i i出发后,状态 j j j的首中时。如果状态 i = j i=j i=j,则代表从 j j j出发的首返时。
- f i j f_{ij} fij:从状态 i i i出发后能到达 j j j的概率。如果 i = j i=j i=j,则代表从 j j j出发后能够再次回到 j j j的概率。
- f j j ( n ) f_{jj}^{(n)} fjj(n):从状态 j j j出发后经过 n n n步能恰好首次回到 j j j的概率, f j j = ∑ n = 1 ∞ f j j ( n ) f_{jj}=\sum_{n=1}^\infty f_{jj}^{(n)} fjj=∑n=1∞fjj(n)。
- p j j ( n ) p_{jj}^{(n)} pjj(n):从状态 j j j出发后经过 n n n步能回到 j j j的概率, p j j ( n ) = ∑ k = 1 n f j j ( k ) p j j ( n − k ) p_{jj}^{(n)}=\sum_{k=1}^nf_{jj}^{(k)}p_{jj}^{(n-k)} pjj(n)=∑k=1nfjj(k)pjj(n−k)。
- τ j \tau_j τj:状态 j j j的平均首中时,定义为 E ( T j ∣ X 0 = j ) E(T_j|X_0=j) E(Tj∣X0=j),对于正常返态有 lim n → ∞ p j j ( n ) = 1 τ j \lim\limits_{n\to \infty }p_{jj}^{(n)}=\frac 1{\tau_j} n→∞limpjj(n)=τj1。
- M j M_j Mj:Markov链运行过程中到达状态 j j j的次数,对于瞬时态服从几何分布。
- 常返: P ( T j < ∞ ∣ X 0 = j ) = 1 P(T_j<\infty |X_0=j)=1 P(Tj<∞∣X0=j)=1或 ∑ n = 1 ∞ f j j ( n ) = 1 \sum_{n=1}^\infty f_{jj}^{(n)}=1 ∑n=1∞fjj(n)=1或 ∑ n = 1 ∞ p j j ( n ) = ∞ \sum_{n=1}^\infty p_{jj}^{(n)}=\infty ∑n=1∞pjj(n)=∞。
- 瞬时: P ( T j < ∞ ∣ X 0 = j ) < 1 P(T_j<\infty |X_0=j)<1 P(Tj<∞∣X0=j)<1或 ∑ n = 1 ∞ f j j ( n ) < 1 \sum_{n=1}^\infty f_{jj}^{(n)}<1 ∑n=1∞fjj(n)<1或 ∑ n = 1 ∞ p j j ( n ) < ∞ \sum_{n=1}^\infty p_{jj}^{(n)}<\infty ∑n=1∞pjj(n)<∞。
- 零常返: E ( T j ∣ X 0 = j ) = ∞ E(T_j|X_0=j)=\infty E(Tj∣X0=j)=∞或常返条件下 lim n → ∞ p j j ( n ) = 0 \lim\limits_{n\to \infty}p_{jj}^{(n)}=0 n→∞limpjj(n)=0。