07.第四章 Markov链(2)

本文深入探讨Markov链的状态空间分解,包括可达性、互达性、闭集、吸收态、周期性等概念,以及如何通过首中时、n步首次返回概率等指标判断状态的常返性和瞬时性,最后分析了状态空间分解和状态性质的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第四章 Markov链(2)

1.状态空间分解

可达:对于状态空间为 E \mathcal E E的Markov链 X \boldsymbol X X,对于状态 i ≠ j ∈ E i\ne j\in \mathcal E i=jE,如果存在 n ≥ 1 n\ge 1 n1使得 p i j ( n ) > 0 p_{ij}^{(n)}>0 pij(n)>0,则称状态 i i i可到达 j j j,记作 i → j i\to j ij。可达性即两个状态之间能够通过有限步骤到达。

互达(互通):如果 i → j i\to j ij j → i j\to i ji,则称状态 i i i j j j互通,记作 i ↔ j i\leftrightarrow j ij。互通是等价关系,满足对称性、传递性、自反性。

  • 根据等价关系,可以将状态空间 E \mathcal E E分为若干个互达等价类。
  • 显然,不同互达等价类之间的任意两个状态都是不互达的,这意味着Markov在一个互达等价类中永远无法到达其他互达等价类,只能永远待在那个类中。
  • 如果任意两个状态互达,也就是整个Markov链只有一个互达等价类,那么称这个Markov链是不可约的。
  • 闭集:对于状态空间的子集 S ⊂ E S\subset \mathcal E SE,如果从 S S S中任何状态出发,都无法到达 E ∖ S \mathcal E\setminus S ES中的状态,则称 S S S为闭集,即 ∀ i ∈ S , j ∈ E ∖ S , i ↛ j \forall i\in S, j\in \mathcal E\setminus S,i\nrightarrow j iS,jES,ij ∅ \empty S S S是显然的闭集。
  • 吸收态:对于某种状态 i i i而言,到达次状态后永不离开的,称为吸收态。即 p i i = 1 p_{ii}=1 pii=1

周期:令 gcd ⁡ \gcd gcd为集合内元素的最大公因子,则定义状态 i i i的周期为 d i = gcd ⁡ { n ≥ 1 : p i i ( n ) > 0 } d_i=\gcd\{n\ge1:p_{ii}^{(n)}>0\} di=gcd{n1:pii(n)>0},也就是状态 i i i能返回自身所经过步数的最大公因数。如果 d i = 1 d_i=1 di=1,则称状态 i i i是非周期的。

  • 假设 d i = d d_i=d di=d,那么存在一个自然数 m m m使得 ∀ n ≥ m , p i i ( n d ) > 0 \forall n\ge m,p_{ii}^{(nd)}>0 nm,pii(nd)>0
  • 互达等价类中的元素拥有共同的周期,即 i ↔ j ⇒ d i = d j i\leftrightarrow j\Rightarrow d_i=d_j ijdi=dj

首中时:给定状态 j ∈ E j\in \mathcal E jE,令 T j = inf ⁡ { n ≥ 1 : X n = j } T_j=\inf\{n\ge1:X_n=j\} Tj=inf{n1:Xn=j},且约定 inf ⁡ ∅ = ∞ \inf \empty=\infty inf=。这样,当 X 0 = j X_0=j X0=j时, T j T_j Tj表示Markov链首次回到状态 j j j的时刻;当 X 0 = i ≠ j X_0=i\ne j X0=i=j时, T j T_j Tj表示Markov链首次到达 j j j的时刻。

常返:如果 P ( T j < ∞ ∣ X 0 = j ) = 1 P(T_j<\infty |X_0=j)=1 P(Tj<X0=j)=1,则称 j j j是常返状态;若 P ( T j < ∞ ∣ X 0 = j ) < 1 P(T_j<\infty |X_0=j)<1 P(Tj<X0=j)<1,则称 j j j是顺时状态。若 E ( T j ∣ X 0 = j ) < ∞ E(T_j|X_0=j)<\infty E(TjX0=j)<,则称 j j j是正常返状态;若 E ( T j ∣ X 0 = j ) = ∞ E(T_j|X_0=j)=\infty E(TjX0=j)=,则称 j j j是零常返状态。

  • 对于同一个互达等价类中的状态,它们有共同的常返性。若 i ↔ j i\leftrightarrow j ij,则 i i i是瞬时态当且仅当 j j j是瞬时态, i i i是常返态当且仅当 j j j是常返态, i i i正常返当且仅当 j j j正常返。
  • 对于常返状态 i ∈ E i\in \mathcal E iE,其互达等价类为 C i = { j ∈ E : i ↔ j } C_i=\{j\in \mathcal E:i\leftrightarrow j\} Ci={jE:ij},则 C i C_i Ci是闭集。
  • 典型的零常返态:对称随机游动中 E = Z \mathcal E=\Z E=Z,状态 0 0 0是一个零常返状态。

状态空间分解:Markov链的状态空间 E \mathcal E E可以分解成若干个互不相交的状态空间为
E = C 1 + C 2 + ⋯ + C M + N , M ≤ ∞ \mathcal E=C_1+C_2+\cdots+C_M+\mathcal N, M\le \infty E=C1+C2++CM+N,M
其中 C i C_i Ci表示常返状态等价类, N \mathcal N N表示瞬时状态的全体,不同的 C i C_i Ci是互不相交的闭集。

2.常返与瞬时

首中时:代表从某个状态出发,经过一定步数(不能是0步)后来到 j j j状态花费的最小步数,由此定义必有 T j ≥ 1 T_j\ge1 Tj1,定义式为:
T j = inf ⁡ { n ≥ 1 : N n = j } T_j=\inf\{n\ge1:N_n=j\} Tj=inf{n1:Nn=j}
n n n步首次返回概率:令 f j j ( n ) = P ( T j = n ∣ X 0 = j ) f_{jj}^{(n)}=P(T_j=n|X_0=j) fjj(n)=P(Tj=nX0=j),即从状态 j j j出发经过 n n n步才第一次返回 j j j状态的概率。由于 T j T_j Tj是最小首次返回时间,故
f j j ( n ) = P ( T j = n ∣ X 0 = j ) = P ( X n = j , X 1 ⋯   , X n − 1 ≠ j ∣ X 0 = j ) f_{jj}^{(n)}=P(T_j=n|X_0=j)=P(X_n=j,X_1\cdots,X_{n-1}\ne j|X_0=j) fjj(n)=P(Tj=nX0=j)=P(Xn=j,X1,Xn1=jX0=j)
因此可以换一种方式定义常返:
P ( T j < ∞ ∣ X 0 = j ) = ∑ n = 1 ∞ P ( T j = n ∣ X 0 = j ) = ∑ n = 1 ∞ f j j ( n ) = 1 \begin{aligned} &P(T_j<\infty |X_0=j)\\ =&\sum_{n=1}^\infty P(T_j=n|X_0=j)\\ =&\sum_{n=1}^\infty f_{jj}^{(n)}=1\\ \end{aligned} ==P(Tj<X0=j)n=1P(Tj=nX0=j)n=1fjj(n)=1
这样常返可以表现为 ∑ n = 1 ∞ f j j ( n ) = 1 \sum_{n=1}^\infty f_{jj}^{(n)}=1 n=1fjj(n)=1,瞬时可以表现为 ∑ n = 1 ∞ f j j ( n ) < 1 \sum_{n=1}^\infty f_{jj}^{(n)}<1 n=1fjj(n)<1。同时定义常返状态 j j j的平均返回时为 τ j = E ( T j ∣ X 0 = j ) = ∑ n = 1 ∞ n f j j ( n ) \tau_j=E(T_j|X_0=j)=\sum_{n=1}^\infty nf_{jj}^{(n)} τj=E(TjX0=j)=n=1nfjj(n),这样正常返即 τ j < ∞ \tau_j<\infty τj<,零常返即 τ j = ∞ \tau_j=\infty τj=

  • 因此得到通过 n n n步首次返回概率 f j j ( n ) f_{jj}^{(n)} fjj(n)验证常返性的方法:对于状态 j j j,对每个步数 n ≥ 1 n\ge 1 n1 f i i ( n ) f_{ii}^{(n)} fii(n),根据 ∑ n = 1 ∞ f j j ( n ) \sum_{n=1}^\infty f_{jj}^{(n)} n=1fjj(n) ∑ n = 1 ∞ n f j j ( n ) \sum_{n=1}^\infty nf_{jj}^{(n)} n=1nfjj(n)来判断状态 j j j的常返性。
  • 这种方法适用于求 f j j ( n ) f_{jj}^{(n)} fjj(n)简单的Markov链,对于复杂的Markov链并不适用。

由于 p j j ( n ) p_{jj}^{(n)} pjj(n)相对于 f j j ( n ) f_{jj}^{(n)} fjj(n)没有首次返回的要求,可以得到它们之间的联系以及与常返状态的联系:
p j j ( n ) = P ( X n = j ∣ X 0 = j ) = ∑ k = 1 n P ( T j = k , X n = j ∣ X 0 = j ) = ∑ k = 1 n P ( T j = k ∣ X 0 = j ) P ( X n = j ∣ X k = j ) = ∑ n = 1 k f j j ( k ) p j j ( n − k ) ∑ n = 1 ∞ p j j ( n ) = ∑ n = 1 ∞ ∑ k = 1 n f j j ( k ) p j j ( n − k ) = ∑ k = 1 ∞ ∑ n = k ∞ f j j ( k ) p j j ( n − k ) = ∑ k = 1 ∞ f j j ( k ) ∑ n = k ∞ p j j ( n − k ) = ∑ k = 1 ∞ f j j ( k ) ∑ n = 0 ∞ p j j ( n ) = ∑ k = 1 ∞ f j j ( k ) ( 1 + ∑ n = 1 ∞ p j j ( n ) ) \begin{aligned} p_{jj}^{(n)}=&P(X_n=j|X_0=j)\\ =&\sum_{k=1}^n P(T_j=k,X_n=j|X_0=j)\\ =&\sum_{k=1}^n P(T_j=k|X_0=j)P(X_n=j|X_k=j)\\ =&\sum_{n=1}^k f_{jj}^{(k)}p_{jj}^{(n-k)}\\ \quad \\ \sum_{n=1}^\infty p_{jj}^{(n)}=&\sum_{n=1}^\infty \sum_{k=1}^n f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^\infty \sum_{n=k}^\infty f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^\infty f_{jj}^{(k)}\sum_{n=k}^\infty p_{jj}^{(n-k)}\\ =&\sum_{k=1}^\infty f_{jj}^{(k)}\sum_{n=0}^\infty p_{jj}^{(n)}=\sum_{k=1}^\infty f_{jj}^{(k)}\left(1+\sum_{n=1}^\infty p_{jj}^{(n)}\right)\\ \end{aligned} pjj(n)====n=1pjj(n)====P(Xn=jX0=j)k=1nP(Tj=k,Xn=jX0=j)k=1nP(Tj=kX0=j)P(Xn=jXk=j)n=1kfjj(k)pjj(nk)n=1k=1nfjj(k)pjj(nk)k=1n=kfjj(k)pjj(nk)k=1fjj(k)n=kpjj(nk)k=1fjj(k)n=0pjj(n)=k=1fjj(k)(1+n=1pjj(n))
如果 ∑ n = 1 ∞ p j j ( n ) < ∞ \sum_{n=1}^\infty p_{jj}^{(n)}<\infty n=1pjj(n)<,则显然有 ∑ k = 1 ∞ f j j ( k ) < 1 \sum_{k=1}^\infty f_{jj}^{(k)}<1 k=1fjj(k)<1,说明状态 j j j瞬时;如果 ∑ n = 1 ∞ p j j ( n ) = ∞ \sum_{n=1}^\infty p_{jj}^{(n)}=\infty n=1pjj(n)=,则 ∀ M ≥ 1 \forall M\ge 1 M1
∑ n = 1 M p j j ( n ) = ∑ n = 1 M ∑ k = 1 n f j j ( k ) p j j ( n − k ) = ∑ k = 1 M ∑ n = k M f j j ( k ) p j j ( n − k ) = ∑ k = 1 M f j j ( k ) ∑ n = k M p j j ( n − k ) = ∑ k = 1 M f j j ( k ) ∑ n = 0 M − k p j j ( n ) ≤ ∑ k = 1 M f j j ( k ) ( 1 + ∑ n = 1 M p j j ( n ) ) ∑ k = 1 M f j j ( k ) ≥ ∑ n = 1 M p j j ( n ) 1 + ∑ n = 1 M p j j ( n ) \begin{aligned} \sum_{n=1}^M p_{jj}^{(n)}=&\sum_{n=1}^M \sum_{k=1}^n f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^M \sum_{n=k}^M f_{jj}^{(k)}p_{jj}^{(n-k)}\\ =&\sum_{k=1}^M f_{jj}^{(k)}\sum_{n=k}^M p_{jj}^{(n-k)}\\ =&\sum_{k=1}^M f_{jj}^{(k)}\sum_{n=0}^{M-k} p_{jj}^{(n)}\le \sum_{k=1}^M f_{jj}^{(k)}\left(1+\sum_{n=1}^M p_{jj}^{(n)}\right)\\ \quad \\ \sum_{k=1}^M f_{jj}^{(k)}\ge&\frac{\sum\limits_{n=1}^M p_{jj}^{(n)}}{1+\sum\limits_{n=1}^M p_{jj}^{(n)}} \end{aligned} n=1Mpjj(n)====k=1Mfjj(k)n=1Mk=1nfjj(k)pjj(nk)k=1Mn=kMfjj(k)pjj(nk)k=1Mfjj(k)n=kMpjj(nk)k=1Mfjj(k)n=0Mkpjj(n)k=1Mfjj(k)(1+n=1Mpjj(n))1+n=1Mpjj(n)n=1Mpjj(n)
M → ∞ M\to \infty M,得到 ∑ k = 1 ∞ f j j ( k ) ≥ 1 \sum_{k=1}^\infty f_{jj}^{(k)}\ge 1 k=1fjj(k)1,故 ∑ k = 1 ∞ f j j ( k ) = 1 \sum_{k=1}^\infty f_{jj}^{(k)}=1 k=1fjj(k)=1,得到 j j j状态正常返。综合以上,可以发现 j j j常返等价于 ∑ n = 1 ∞ p j j ( n ) = ∞ \sum_{n=1}^\infty p_{jj}^{(n)}=\infty n=1pjj(n)=,瞬时等价于 ∑ n = 1 ∞ p j j ( n ) < ∞ \sum_{n=1}^\infty p_{jj}^{(n)}<\infty n=1pjj(n)<

由此可以推出相关定理:

  1. 如果 j j j是瞬时或零常返状态,那么 lim ⁡ n → ∞ p j j ( n ) = 0 \lim\limits_{n\to \infty}p_{jj}^{(n)}=0 nlimpjj(n)=0
  2. 如果 j j j是周期为 d j d_j dj且正常返的,那么 lim ⁡ n → ∞ p j j ( n d j ) = d j τ j \lim\limits_{n\to \infty} p_{jj}^{(nd_j)}=\frac {d_j}{\tau_j} nlimpjj(ndj)=τjdj,对于非周期状态则有 lim ⁡ n → ∞ p j j ( n ) = 1 τ j \lim\limits_{n\to \infty }p_{jj}^{(n)}=\frac1 {\tau_j} nlimpjj(n)=τj1
  • 由此得到通过 n n n步到达概率 p j j ( n ) p_{jj}^{(n)} pjj(n)判断状态常返性的方法:对于状态 j j j ∑ n = 1 ∞ p j j ( n ) = ∞ \sum_{n=1}^\infty p_{jj}^{(n)}=\infty n=1pjj(n)=可推出常返, ∑ n = 1 ∞ p j j ( n ) < ∞ \sum_{n=1}^\infty p_{jj}^{(n)} <\infty n=1pjj(n)<可推出瞬时, lim ⁡ n → ∞ p j j ( n ) \lim\limits_{n \to \infty}p_{jj}^{(n)} nlimpjj(n)可推出平均首中时 τ j \tau_j τj,特别地如果 lim ⁡ n → ∞ p j j ( n ) \lim\limits_{n\to \infty}p_{jj}^{(n)} nlimpjj(n)则说明是瞬时或零常返。
  1. 如果 j j j是零常返或瞬时状态,那么对任意状态 i i i,有 lim ⁡ n → ∞ p i j ( n ) = 0 \lim\limits_{n\to \infty }p_{ij}^{(n)}=0 nlimpij(n)=0
  2. 如果 j j j是非周期正常返的,那么对任意状态 i i i,有 lim ⁡ n → ∞ p i j ( n ) = f i j τ j \lim\limits_{n\to \infty }p_{ij}^{(n)}=\frac{f_{ij}}{\tau_j} nlimpij(n)=τjfij,这里 f i j f_{ij} fij是从 i i i出发可达 j j j的概率。

有限状态Markov链一定存在正常返状态。若每个状态都是瞬时或零常返的,那么有
lim ⁡ n → ∞ p i j ( n ) = 1 1 = lim ⁡ n → ∞ ∑ j = 1 N p i j ( n ) = ∑ j = 1 N lim ⁡ n → ∞ p i j ( n ) = 0 , 矛 盾 \lim\limits_{n\to \infty }p_{ij}^{(n)}=1\\ 1=\lim_{n\to \infty }\sum_{j=1}^Np_{ij}^{(n)}=\sum_{j=1}^N \lim_{n\to \infty }p_{ij}^{(n)}=0,矛盾 nlimpij(n)=11=nlimj=1Npij(n)=j=1Nnlimpij(n)=0
现定义 M j M_j Mj为Markov链运行过程中,处于状态 j j j的总次数,即
M j = ♯ { n ≥ 0 : X n = j } M_j=\sharp\{n\ge 0:X_n=j\} Mj={n0:Xn=j}
有相关定理如下:

  1. 如果 j j j是常返状态,那么 P ( M j = ∞ ∣ X 0 = j ) = 1 P(M_j=\infty |X_0=j)=1 P(Mj=X0=j)=1

  2. 如果 j j j是瞬时状态,那么 P ( M j < ∞ ∣ X 0 = j ) = 1 P(M_j<\infty |X_0=j)=1 P(Mj<X0=j)=1。在这种情况下,令
    ρ = P ( T j < ∞ ∣ X 0 = j ) = ∑ k = 1 ∞ f j j ( k ) < 1 \rho =P(T_j<\infty |X_0=j)=\sum_{k=1}^\infty f_{jj}^{(k)}<1 ρ=P(Tj<X0=j)=k=1fjj(k)<1
    则有 M j M_j Mj服从参数为 1 − ρ 1-\rho 1ρ的几何分布, P ( M j = n ∣ X 0 = j ) = ( 1 − ρ ) ρ n − 1 P(M_j=n|X_0=j)=(1-\rho)\rho^{n-1} P(Mj=nX0=j)=(1ρ)ρn1,这代表从状态 j j j出发还能回到状态 j j j的概率是 ρ \rho ρ,一旦以概率 1 − ρ 1-\rho 1ρ进入了不可返回 j j j的状态则 M j M_j Mj将不再增长,每次在 j j j状态进行一次两点分布抽样。

现在对以上提到的定义做一些区分:

  • T j T_j Tj:从状态 i i i出发后,状态 j j j的首中时。如果状态 i = j i=j i=j,则代表从 j j j出发的首返时。
  • f i j f_{ij} fij:从状态 i i i出发后能到达 j j j的概率。如果 i = j i=j i=j,则代表从 j j j出发后能够再次回到 j j j的概率。
  • f j j ( n ) f_{jj}^{(n)} fjj(n):从状态 j j j出发后经过 n n n步能恰好首次回到 j j j的概率, f j j = ∑ n = 1 ∞ f j j ( n ) f_{jj}=\sum_{n=1}^\infty f_{jj}^{(n)} fjj=n=1fjj(n)
  • p j j ( n ) p_{jj}^{(n)} pjj(n):从状态 j j j出发后经过 n n n步能回到 j j j的概率, p j j ( n ) = ∑ k = 1 n f j j ( k ) p j j ( n − k ) p_{jj}^{(n)}=\sum_{k=1}^nf_{jj}^{(k)}p_{jj}^{(n-k)} pjj(n)=k=1nfjj(k)pjj(nk)
  • τ j \tau_j τj:状态 j j j的平均首中时,定义为 E ( T j ∣ X 0 = j ) E(T_j|X_0=j) E(TjX0=j),对于正常返态有 lim ⁡ n → ∞ p j j ( n ) = 1 τ j \lim\limits_{n\to \infty }p_{jj}^{(n)}=\frac 1{\tau_j} nlimpjj(n)=τj1
  • M j M_j Mj:Markov链运行过程中到达状态 j j j的次数,对于瞬时态服从几何分布。
  • 常返: P ( T j < ∞ ∣ X 0 = j ) = 1 P(T_j<\infty |X_0=j)=1 P(Tj<X0=j)=1 ∑ n = 1 ∞ f j j ( n ) = 1 \sum_{n=1}^\infty f_{jj}^{(n)}=1 n=1fjj(n)=1 ∑ n = 1 ∞ p j j ( n ) = ∞ \sum_{n=1}^\infty p_{jj}^{(n)}=\infty n=1pjj(n)=
  • 瞬时: P ( T j < ∞ ∣ X 0 = j ) < 1 P(T_j<\infty |X_0=j)<1 P(Tj<X0=j)<1 ∑ n = 1 ∞ f j j ( n ) < 1 \sum_{n=1}^\infty f_{jj}^{(n)}<1 n=1fjj(n)<1 ∑ n = 1 ∞ p j j ( n ) < ∞ \sum_{n=1}^\infty p_{jj}^{(n)}<\infty n=1pjj(n)<
  • 零常返: E ( T j ∣ X 0 = j ) = ∞ E(T_j|X_0=j)=\infty E(TjX0=j)=或常返条件下 lim ⁡ n → ∞ p j j ( n ) = 0 \lim\limits_{n\to \infty}p_{jj}^{(n)}=0 nlimpjj(n)=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值