【多元统计分析】06.均值的区间估计与似然比检验

六、均值的区间估计与似然比检验

1.均值的区间估计

之前我们讨论过正态总体 N p ( μ , Σ ) N_p(\mu,\Sigma) Np(μ,Σ)中参数的点估计,提到用 X ˉ \bar X Xˉ作为 μ \mu μ的极大似然估计,这是一种点估计。如同一元统计中说的一样,尽管点估计具有无偏性、有效性、相合性等等优点,但点估计与估计参数相等的概率依然是0。而构造一个置信区间,就使得均值有落到置信区间中的可能,现在我们来讨论均值的区间估计。

由于多元统计中的均值是一个向量,故置信区间也应该是多维的,然而为了与一元三大分布的分位数建立联系,我们还是要将向量转化为一个数值。而且,既然是对均值的估计,枢轴量自然与样本均值有关的。

如果总体为 N p ( μ , Σ ) N_p(\mu,\Sigma) Np(μ,Σ),抽取 n n n个样本 X ( 1 ) , ⋯   , X ( n ) X_{(1)},\cdots,X_{(n)} X(1),,X(n),则有 X ˉ ∼ N ( μ , Σ / n ) , A ∼ W p ( n − 1 , Σ ) \bar X\sim N(\mu,\Sigma/n),A\sim W_p(n-1,\Sigma) XˉN(μ,Σ/n),AWp(n1,Σ),所以应构造枢轴量消除 Σ \Sigma Σ的影响,即
T 2 = [ n ( X ˉ − μ ) ] ′ ( A n − 1 ) − 1 [ n ( X ˉ − μ ) ] ∼ T 2 ( p , n − 1 ) , T^2=[\sqrt n(\bar X-\mu)]'\left(\frac{A}{n-1} \right)^{-1}[\sqrt n (\bar X-\mu)]\sim T^2(p,n-1), T2=[n (Xˉμ)](n1A)1[n (Xˉμ)]T2(p,n1),
与一元统计建立起联系,又有
n − p ( n − 1 ) p T 2 ∼ F ( p , n − p ) . \frac{n-p}{(n-1)p}T^2\sim F(p,n-p). (n1)pnpT2F(p,np).
所以对于给定的置信度 α \alpha α,设 F α F_\alpha Fα满足 P { F ( p , n − p ) ≤ F α } = 1 − α {\rm P}\{F(p,n-p)\le F_\alpha\}=1-\alpha P{F(p,np)Fα}=1α,则置信域应该使得
n − p ( n − 1 ) p T 2 ≤ F α , n ( X ˉ − μ ) ′ S − 1 ( X ˉ − μ ) ≤ ( n − 1 ) p n − p F α . \frac{n-p}{(n-1)p}T^2\le F_{\alpha},\\ n(\bar X-\mu)'S^{-1}(\bar X-\mu) \le \frac{(n-1)p}{n-p}F_{\alpha}. (n1)pnpT2Fα,n(Xˉμ)S1(Xˉμ)np(n1)pFα.
这是一个中心在 X ˉ \bar X Xˉ的椭球。想想一元统计中区间估计与假设检验的关系,就可以知道,如果需要检验的假设是 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0,则 μ 0 \mu_0 μ0落在置信域内就应当接受原假设,否则应当拒绝原假设。

2.联立置信区间

求解一个置信椭球很多时候是不太方便的,在刚刚得到的置信椭球中,要直接给出 μ \mu μ显式取值范围不容易,更多时候我们只会将一个既定的 μ 0 \mu_0 μ0代入,检查它是否位于置信椭球内。很明显,要给出显式的取值范围,还是一维数值比较方便。那么,我们能否给出 μ \mu μ的每个分量的置信度为 α \alpha α的置信区间呢?

统一讨论,我们可以讨论 μ \mu μ的分量的线性组合 a ′ μ a'\mu aμ的置信区间,这里 a a a是一个 p p p维列向量。之后要求解每一个分量 μ i \mu_i μi,只需要取分别 a = e i a=e_i a=ei即可。讨论 a ′ μ a'\mu aμ,最直接的想法还是 a ′ X ˉ a'\bar X aXˉ,我们令 Y ( α ) = a ′ X ( α ) Y_{(\alpha)}=a'X_{(\alpha)} Y(α)=aX(α),这样每一个 Y ( α ) Y_{(\alpha)} Y(α)都是一维的随机变量,且 Y ( α ) ∼ N ( a ′ μ , a ′ Σ a ) Y_{(\alpha)}\sim N(a'\mu, a'\Sigma a) Y(α)N(aμ,aΣa),我们就可以使用一元统计的方法,用 Y ˉ \bar Y Yˉ来估计 a ′ μ a'\mu aμ。当 Σ \Sigma Σ未知时用 S S S作为估计量,得到 t t t统计量为
t = Y ˉ − a ′ μ a ′ S a / n = n ( a ′ X ˉ − a ′ μ ) a ′ S a . t=\frac{\bar Y-a'\mu}{\sqrt{a'Sa/n}}=\frac{\sqrt n(a'\bar X-a'\mu)}{\sqrt{a'Sa}}. t=aSa/n Yˉaμ=aSa n (aXˉaμ).
这样得到的置信区间为
a ′ μ ∈ [ a ′ X ˉ − t α / 2 a ′ S a n , a ′ X ˉ + t α / 2 a ′ X a n ] , P { ∣ t ( n − 1 ) ∣ ≤ t α / 2 } = 1 − α . a'\mu \in \left[a'\bar X-t_{\alpha/2}\frac{\sqrt{a'Sa}}{\sqrt n},a'\bar X+t_{\alpha/2}\frac{\sqrt {a'Xa}}{\sqrt n} \right],{\rm P}\{|t(n-1)|\le t_{\alpha/2} \}=1-\alpha. aμ[aXˉtα/2n aSa ,aXˉ+tα/2n aXa ],P{t(n1)tα/2}=1α.
取定 a = e i a=e_i a=ei,就得到了各个分量的置信区间。但有一个问题,如果每一个分量的置信水平都是 1 − α 1-\alpha 1α,则最终得到的置信域置信水平将低于 1 − α 1-\alpha 1α——这很好理解,如果有一个分量取到了置信区间的边界,就说明 μ \mu μ的置信水平已经到达了边界;而如果又有一个分量也取到置信区间的边界,此时可信度已经明显低于 1 − α 1-\alpha 1α,但依然位于置信域内。也就是说,这种方法扩大了置信区间的范围,减小了精度。如果要求的是置信水平为 1 − α 1-\alpha 1α的置信域且各分量独立,应当对每一个分量控制置信水平为 ( 1 − α ) 1 / p (1-\alpha)^{1/p} (1α)1/p;如果分量是不独立的,就控制每一个分量的置信水平为 ( 1 − α / p ) (1-\alpha/p) (1α/p),这样总的置信水平将不小于 1 − α 1-\alpha 1α

统计量 t t t的值随着 a a a的变化而变化,我们想找到一个统计量适用于所有的 a a a。现在将统计量改为
t 2 = n a ′ ( X ˉ − μ ) a ′ S a , t^2=\frac{na'(\bar X-\mu)}{a'Sa}, t2=aSana(Xˉμ),
有定理保证 t 2 ≤ n ( X ˉ − μ ) ′ S − 1 ( X ˉ − μ ) = d T 2 t^2\le n(\bar X-\mu)'S^{-1}(\bar X-\mu)\stackrel {\rm d}=T^2 t2n(Xˉμ)S1(Xˉμ)=dT2,这里不等式右边为一个与 a a a无关的数,因此,这样构造出来的置信区间是最大置信区间。我们知道 T 2 ∼ T 2 ( p , n − 1 ) T^2\sim T^2(p,n-1) T2T2(p,n1),所以
n − p ( n − 1 ) p T 2 ∼ F ( p , n − p ) . \frac{n-p}{(n-1)p}T^2\sim F(p,n-p). (n1)pnpT2F(p,np).
找到 F ( p , n − p ) F(p,n-p) F(p,np)的上侧 α \alpha α分位数,则有
n − p ( n − 1 ) p T 2 ≤ F α ⇔ t 2 ≤ T 2 ≤ ( n − 1 ) p F α n − p , \frac{n-p}{(n-1)p}T^2\le F_{\alpha}\Leftrightarrow t^2\le T^2\le \frac{(n-1)pF_\alpha}{n-p}, (n1)pnpT2Fαt2T2np(n1)pFα,
从上式解出 a ′ μ a'\mu aμ最大置信区间
a ′ μ ∈ [ a ′ X ˉ − ( n − 1 ) p F α n − p a ′ S a n , a ′ X ˉ + ( n − 1 ) p F α n − p a ′ S a n ] . a'\mu \in \left[ a'\bar X-\sqrt{\frac{(n-1)pF_\alpha}{n-p}\frac{a'Sa}n}, a'\bar X+\sqrt{\frac{(n-1)pF_\alpha}{n-p}\frac{a'Sa}n} \right]. aμ[aXˉnp(n1)pFαnaSa ,aXˉ+np(n1)pFαnaSa ].
在这个式子中取 a = e i a=e_i a=ei,会得到比按照 t t t分布更宽松的置信区间,我们将这个置信区间称为 T 2 T^2 T2区间。

3.假设检验——似然比检验

在均值的区间估计中,我们已经提到了均值的假设检验,现在先提出一种通用的假设检验方法——似然比检验,它与一元统计中的似然比检验类似。设 p p p元总体的密度函数为 f ( x , θ ) f(x,\theta) f(x,θ),这里 θ ∈ Θ \theta\in \Theta θΘ,设 Θ 0 \Theta_0 Θ0 Θ \Theta Θ的子集,需要检验的假设是
H 0 : θ ∈ Θ 0 ⇔ H 1 : θ ∉ Θ 0 , H_0:\theta \in\Theta_0\Leftrightarrow H_1:\theta \notin \Theta_0, H0:θΘ0H1:θ/Θ0,
将样本的似然函数记作 L ( θ ; X ) = ∏ i = 1 n f ( x ( i ) ; θ ) L(\theta;X)=\prod_{i=1}^n f(x_{(i)};\theta) L(θ;X)=i=1nf(x(i);θ),其对数称为对数似然函数,则似然比统计量记作
λ = max ⁡ θ ∈ Θ 0 L ( θ ; X ) max ⁡ θ ∈ Θ L ( θ ; X ) ∈ [ 0 , 1 ] . \lambda =\frac{\max _{\theta\in\Theta_0}L(\theta ;X)}{\max _{\theta \in\Theta}L(\theta ;X)}\in[0,1]. λ=maxθΘL(θ;X)maxθΘ0L(θ;X)[0,1].
由式子的表示直观地看,如果 θ ∈ Θ 0 \theta \in\Theta_0 θΘ0,则分子会更大,分母不变,所以 λ \lambda λ越大越应该接受 H 0 H_0 H0。要获得假设的显著性水平,就要获得 λ \lambda λ抽样分布,最好是精确分布。但很多时候精确分布是不易获得的,当样本量很大且满足一定的正则条件时,我们可以使用如下的近似
− 2 ln ⁡ λ ∼ χ 2 ( f ) , f = d dim ⁡ Θ − dim ⁡ Θ 0 . -2\ln \lambda \sim \chi^2(f),\quad f\stackrel {\rm d}=\dim\Theta-\dim \Theta_0. 2lnλχ2(f),f=ddimΘdimΘ0.
使用似然比检验的难点,在于找到使似然函数(或对数似然)最大的参数估计 θ ^ \hat\theta θ^,在一元统计中一般使用求偏导的方法,而在多元统计中,可能需要使用矩阵微商

回顾总结

  1. 求正态总体均值的置信椭球,需要构造 T 2 = n ( X ˉ − μ ) S − 1 ( X ˉ − μ ) T^2=n(\bar X-\mu)S^{-1}(\bar X-\mu) T2=n(Xˉμ)S1(Xˉμ),运用 T 2 T^2 T2分布与 F F F分布的联系找出分位数 F α ( p , n − p ) F_\alpha(p,n-p) Fα(p,np),最终得到的置信椭球为 T 2 < ( n − 1 ) p n − p F α T^2<\frac{(n-1)p}{n-p}F_\alpha T2<np(n1)pFα。置信椭球可以用来进行假设检验。

  2. 求正态总体均值的联立置信区间,有两种,一种是对每个分量直接求,为
    a ′ X ˉ − t α / 2 a ′ S a n ≤ a ′ μ ≤ a ′ X ˉ + t α / 2 a ′ S a n , a'\bar X-t_{\alpha/2}\sqrt{\frac{a'Sa}{n}}\le a'\mu \le a'\bar X+t_{\alpha/2}\sqrt{\frac{a'Sa}{n}}, aXˉtα/2naSa aμaXˉ+tα/2naSa ,
    另一种是其最大置信区间,也称为 T 2 T^2 T2区间,为
    a ′ X ˉ − c a ′ S a n ≤ a ′ μ ≤ a ′ X ˉ + c a ′ S a n , c = ( n − 1 ) p F α ( p , n − p ) n − p . a'\bar X-c\sqrt{\frac{a'Sa}{n}}\le a'\mu \le a'\bar X+c\sqrt{\frac{a'Sa}{n}},\quad c=\sqrt{\frac{(n-1)pF_{\alpha}(p,n-p)}{n-p}}. aXˉcnaSa aμaXˉ+cnaSa ,c=np(n1)pFα(p,np) .
    两种方式得到的联立置信区间得到的置信域,置信水平都比 1 − α 1-\alpha 1α低;要得到置信水平为 1 − α 1-\alpha 1α的置信域,需要对每个分量求置信水平为 1 − α / p 1-\alpha/p 1α/p(不独立)或 ( 1 − α ) 1 / p (1-\alpha)^{1/p} (1α)1/p(独立)的置信区间。

  3. 似然比检验指的是对于假设检验问题 H 0 : θ ∈ Θ 0 ⇔ H 1 : θ ∉ Θ 0 H_0:\theta \in\Theta_0\Leftrightarrow H_1:\theta\notin\Theta_0 H0:θΘ0H1:θ/Θ0,构造一个检验统计量为
    λ = max ⁡ θ ∈ Θ 0 ) L ( θ ; X ) max ⁡ θ ∈ Θ L ( θ ; X ) . \lambda=\frac{\max_{\theta \in\Theta_0)}L(\theta ;X)}{\max_{\theta \in\Theta}L(\theta ;X)}. λ=maxθΘL(θ;X)maxθΘ0)L(θ;X).
    \frac{\max_{\theta \in\Theta_0)}L(\theta ;X)}{\max_{\theta \in\Theta}L(\theta ;X)}.
    $$
    n → ∞ n\to \infty n时, − 2 ln ⁡ λ ∼ χ 2 ( f ) , f = dim ⁡ Θ − dim ⁡ Θ 0 -2\ln \lambda \sim \chi^2(f),f=\dim \Theta-\dim \Theta_0 2lnλχ2(f),f=dimΘdimΘ0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值