07.第三章 点估计(2)

第三章 点估计(2)

1.极大似然法

极大似然原理:对于某个给定的样本,当参数 θ \theta θ θ 1 \theta_1 θ1时,这个样本的出现概率要比参数 θ 2 \theta_2 θ2时更大,在所有的参数中,使得样本出现概率最大的参数 θ ^ \hat \theta θ^则为其极大似然估计。判断哪个参数对应的样本出现概率最大,使用似然函数。设 f ( x , θ ) = f ( x 1 , ⋯   , x n , θ ) f(\boldsymbol x,\theta)=f(x_1,\cdots,x_n,\theta) f(x,θ)=f(x1,,xn,θ)为样本 X = ( X 1 , ⋯   , X n ) \boldsymbol X=(X_1,\cdots,X_n) X=(X1,,Xn)的概率函数,固定 x \boldsymbol x x将其看成 θ \theta θ的函数,记作 L ( θ , x ) = f ( x , θ ) L(\theta,\boldsymbol x)=f(\boldsymbol x,\theta) L(θ,x)=f(x,θ),称为似然函数。 ln L ( θ , x ) \text{ln}L(\theta,\boldsymbol x) lnL(θ,x)称为对数似然函数,常记作 l ( θ , x ) l(\theta,\boldsymbol x) l(θ,x)

由于 L ( θ , x ) L(\theta,\boldsymbol x) L(θ,x)是固定 x \boldsymbol x x以后,关于 θ \theta θ的样本出现概率,所以要求 θ \theta θ为多少时概率最大,也就是极大似然估计方法。

极大似然估计(MLE):设 X = ( X 1 , ⋯   , X n ) \boldsymbol X=(X_1,\cdots,X_n) X=(X1,,Xn)是从参数分布族 F = { f ( x , θ ) , θ ∈ Θ } \mathscr F=\{f(x,\theta),\theta\in\Theta\} F={f(x,θ),θΘ}中抽取的简单随机样本, L ( θ , x ) L(\theta,\boldsymbol x) L(θ,x)是其似然函数。如果存在一个统计量 θ ^ ∗ = θ ^ ∗ ( X ) \hat \theta^*=\hat \theta^*(X) θ^=θ^(X),满足条件
L ( θ ^ ∗ , x ) = sup ⁡ θ ∈ Θ L ( θ , x ) , x ∈ X 或 者 l ( θ ^ ∗ , x ) = sup ⁡ θ ∈ Θ l ( θ . x ) L(\hat \theta^*,\boldsymbol x)=\sup_{\theta\in\Theta}L(\theta,\boldsymbol x),\boldsymbol x\in\mathscr X 或者l(\hat \theta^*,\boldsymbol x)=\sup_{\theta\in\Theta}l(\theta.\boldsymbol x) L(θ^,x)=θΘsupL(θ,x),xXl(θ^,x)=θΘsupl(θ.x)
则称 θ ^ ∗ ( X ) \hat \theta^*(X) θ^(X) θ \theta θ的极大似然估计,同时 g ( θ ^ ∗ ( X ) ) g(\hat \theta^*(X)) g(θ^(X)) g ( θ ) g(\theta) g(θ)的极大似然估计(可函数变换性)。

如何求MLE:

  • 如果 L ( θ , x ) L(\boldsymbol {\theta ,x}) L(θ,x)连续可微的,利用微分处理 l ( θ , x ) l(\boldsymbol {\theta,x}) l(θ,x),如果 l ( θ , x ) l(\boldsymbol {\theta,x}) l(θ,x)的极大值在参数空间 Θ \Theta Θ的内点处取到,就一定满足似然方程组 ∂ l ( θ , x ) ∂ θ i = 0 \frac{\partial l(\boldsymbol {\theta,x})}{\partial \theta_i}=0 θil(θ,x)=0。但满足似然方程组的点 ( θ 1 , ⋯   , θ k ) (\theta_1,\cdots,\theta_k) (θ1,,θk)却不一定是MLE,因为极大值可能不在内点处取到(也可能在边界),且方程组的解也可能不唯一。一般可以通过判断似然函数的单调性(关于 θ \theta θ)再利用似然方程组求解。

    但如果分布族是指数族,且似然方程组的解出现在参数空间的内点,则其解必为MLE。

  • 如果 L ( θ , x ) L(\theta,\boldsymbol x) L(θ,x)不可微甚至不连续,那么似然方程一般没有意义,需要从定义出发寻找MLE。

MLE的性质:

  • 无偏性方面,极大似然估计不一定是无偏的。

  • 极大似然估计如果存在,则它必为充分统计量 T T T的函数,即可以整理成 φ ( T ) \varphi(T) φ(T)的形式。

  • 相合性方面,极大似然估计也不一定是相合的。

  • 渐近正态性方面,如果 L ( θ , x ) L(\theta,\boldsymbol x) L(θ,x)的1~3阶导关于 θ \theta θ有界, l ( θ , x ) l(\theta,\boldsymbol x) l(θ,x)的1~3阶导存在,且信息函数 I ( θ ) ∈ ( 0 , ∞ ) I(\theta)\in(0,\infty) I(θ)(0,),对数似然方程有唯一解,则极大似然估计是渐进相合正态的,且
    n ( θ ^ ∗ − θ ) ⟶ L N ( 0 , 1 I ( θ ) ) I ( θ ) = E [ ( ∂ l ( θ , X ) ∂ θ ) 2 ] = ∫ − ∞ ∞ ( ∂ ln f ( x , θ ) ∂ θ ) 2 f ( x , θ ) d x \sqrt{n}(\hat \theta^*-\theta)\stackrel{\mathscr L}{\longrightarrow }N(0,\frac{1}{I(\theta)})\\ I(\theta)=E\left[\left(\frac{\partial l(\theta,\boldsymbol X)}{\partial \theta}\right)^2\right]=\int_{-\infty}^\infty\left(\frac{\partial{\text{ln}f(x,\theta)}}{\partial \theta}\right)^2f(x,\theta)dx n (θ^θ)LN(0,I(θ)1)I(θ)=E[(θl(θ,X))2]=(θlnf(x,θ))2f(x,θ)dx
    注意, θ \theta θ可能是一个参数组 ( θ 1 , ⋯   , θ n ) (\theta_1,\cdots,\theta_n) (θ1,,θn),要求其中某一个参数 θ k \theta_k θk的信息函数,就将对数似然函数对 θ k \theta_k θk求偏导;在求期望的过程中,所有的参数 θ i \theta_i θi都视为常数,对样本 x x x求期望,所以最后的 I ( θ ) I(\theta) I(θ)是关于参数 θ \theta θ的函数,不含 x x x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值