20.数理统计备考(2)

数理统计备考(2)

第三章

本章是点估计,包含点估计的评定法则、矩估计、极大似然估计、UMVUE、CR不等式等内容。

点估计指的是用一个统计量来作为一个未知参数(函数)的估计值。用来估计一个未知参数的点估计有很多种,它们的优劣程度有一系列判断准则。

  1. 无偏性: E θ ^ = θ E\hat \theta=\theta Eθ^=θ是否成立,或者 n → ∞ n\to\infty n时是否有 E θ ^ n → θ E\hat\theta_n\to\theta Eθ^nθ
  2. 有效性: D θ ^ D\hat\theta Dθ^是大还是小。
  3. 相合性:是否有 θ ^ → θ \hat\theta\to \theta θ^θ,有弱相合、强相合、 r r r阶矩相合之分。

常用的点估计方式有矩估计和极大似然估计。

矩估计指的是用样本矩代替总体矩,首先要将未知参数(函数)用总体矩表达出来(主要是均值、方差),再用相应的样本矩替换。样本矩指
a n , k = 1 n ∑ i = 1 n X i k ⇒ E ( X i k ) m n , k = 1 n ∑ i = 1 n ( X i − X ˉ ) k ⇒ E ( X i − X ˉ ) k a_{n,k}=\frac1n\sum_{i=1}^nX_i^k\Rightarrow E(X_i^k)\\ m_{n,k}=\frac1n\sum_{i=1}^n(X_i-\bar X)^k\Rightarrow E(X_i-\bar X)^k an,k=n1i=1nXikE(Xik)mn,k=n1i=1n(XiXˉ)kE(XiXˉ)k
矩估计量不是唯一的,用样本矩代替总体矩的方法叫做矩法估计。

极大似然估计指的是使似然函数达到最大值的参数值作为点估计值,记作MLE。似然函数形式上与样本的联合密度函数一致,但主元是未知参数,记作 L ( θ ; x ) = f ( x ; θ ) L(\theta;\boldsymbol x)=f(\boldsymbol x;\theta) L(θ;x)=f(x;θ)。对数似然函数为 l ( θ ; x ) = ln ⁡ L ( θ ; x ) l(\theta;\boldsymbol x)=\ln L(\theta;\boldsymbol x) l(θ;x)=lnL(θ;x)

要使得似然函数或对数似然函数取到最大值,对于参数空间为开集的情况,只要让
∂ l ∂ θ i = 0 \frac{\partial l}{\partial\theta_i}=0 θil=0
如果参数空间不是开集或者似然函数关于 θ \theta θ不可导,则求MLE需要观察似然函数的形式。但如果样本分布族是指数族,则只要似然方程组的解是自然参数空间的内点,则必为 θ \theta θ的MLE。


UMVUE即一致最小方差无偏估计,指的是在所有参数函数 g ( θ ) g(\theta) g(θ)的无偏估计中,无论 g ( θ ) g(\theta) g(θ)实际是多少,方差都是最小的那个点估计。将UMVUE限制在无偏估计类,是因为无偏估计的均方误差就是方差,即
E ( g ^ − g ( θ ) ) 2 = E g ^ 2 − 2 g ( θ ) E g ^ + ( g ( θ ) ) 2 = E g ^ 2 − ( E g ^ ) 2 = D g ^ E(\hat g-g(\theta))^2=E\hat g^2-2g(\theta)E\hat g+(g(\theta))^2=E\hat g^2-(E\hat g)^2=D\hat g E(g^g(θ))2=Eg^22g(θ)Eg^+(g(θ))2=Eg^2(Eg^)2=Dg^
如果要验证某个估计量是UMVUE,可以使用零无偏估计法。如果 g ^ ( X ) \hat g(\boldsymbol X) g^(X) g ( θ ) g(\theta) g(θ)的UMVUE,要满足以下条件:

  1. E ( g ^ ( X ) ) = g ( θ ) E(\hat g(\boldsymbol X))=g(\theta) E(g^(X))=g(θ)
  2. ∀ l ( X ) , E θ l ( X ) = 0 \forall l(\boldsymbol X),E_\theta l(\boldsymbol X)=0 l(X),Eθl(X)=0,有 E ( l ( X ) , g ^ ( X ) ) = 0 E(l(\boldsymbol X),\hat g(\boldsymbol X))=0 E(l(X),g^(X))=0

即所有的零无偏估计都和 g ^ ( X ) \hat g(\boldsymbol X) g^(X)独立。

如果要寻找某个参数函数 g ( θ ) g(\theta) g(θ)的UMVUE,可以使用L-S定理,找到一个充分完备统计量 T ( X ) T(\boldsymbol X) T(X),再找到一个函数 g ^ \hat g g^,使得 E ( g ^ ( T ) ) = g ( θ ) E(\hat g(T))=g(\theta) E(g^(T))=g(θ),则 g ^ ( T ) \hat g(T) g^(T) g ( θ ) g(\theta) g(θ)的UMVUE。

在没有给出无偏估计的情况下,可以使用以下几种求UMVUE的方法:

  1. 如果给定的参数值显然是某一个事件的概率,则可以取一个统计量为这个事件的示性函数,记作 φ ( X ) \varphi(\boldsymbol X) φ(X),于是UMVUE为 E ( φ ( X ) ∣ T ) E(\varphi(\boldsymbol X)|T) E(φ(X)T)

    X ∼ b ( 1 , p ) X\sim b(1,p) Xb(1,p),要估计的参数为 g ( p ) = p ( 1 − p ) g(p)=p(1-p) g(p)=p(1p),充分完备统计量为 T = ∑ i = 1 n X i T=\sum_{i=1}^nX_i T=i=1nXi,此时可以取 φ ( X ) = I ( X 1 = 1 , X 2 = 0 ) \varphi(\boldsymbol X)=I_{(X_1=1,X_2=0)} φ(X)=I(X1=1,X2=0)。于是
    E ( φ ( X ) ∣ T = t ) = P ( X 1 = 1 , X 2 = 0 ∣ T = t ) P ( T = t ) = P ( X 1 = 1 ) P ( X 2 = 0 )   P ( ∑ i = 3 n X i = t − 1 ) P ( T = t ) = p ( 1 − p ) C n − 2 t − 1 p t − 1 ( 1 − p ) n − t − 1 C n t p t ( 1 − p ) n − t = C n − 2 t − 1 C n t = t ( n − t ) n ( n − 1 ) \begin{aligned} E(\varphi(\boldsymbol X)|T=t)=&\frac{\mathbf P(X_1=1,X_2=0|T=t)}{\mathbf P(T=t)}\\ =&\frac{\mathbf P(X_1=1)\mathbf P(X_2=0)\,\mathbf P(\sum_{i=3}^nX_i=t-1)}{\mathbf P(T=t)}\\ =&\frac{p(1-p)C_{n-2}^{t-1}p^{t-1}(1-p)^{n-t-1}}{C_n^tp^t(1-p)^{n-t}}\\ =&\frac{C_{n-2}^{t-1}}{C_n^t}\\ =&\frac{t(n-t)}{n(n-1)} \end{aligned} E(φ(X)T=t)=====P(T=t)P(X1=1,X2=0T=t)P(T=t)P(X1=1)P(X2=0)P(i=3nXi=t1)Cntpt(1p)ntp(1p)Cn2t1pt1(1p)nt1CntCn2t1n(n1)t(nt)
    得到UMVUE为
    T ( n − T ) n ( n − 1 ) \frac{T(n-T)}{n(n-1)} n(n1)T(nT)

  2. 如果待估参数是没什么特征的参数函数,则可以自己设出其关于 T T T的无偏估计函数,并由无偏性构造等式求出无偏估计的具体表达式。

    X ∼ P ( λ ) X\sim P(\lambda ) XP(λ),待估参数为 g ( λ ) = λ r , r ∈ N g(\lambda)=\lambda^r,r\in\N g(λ)=λr,rN,充分统计量为 T = ∑ i = 1 n X i T=\sum_{i=1}^nX_i T=i=1nXi。此时 T ∼ P ( n λ ) T\sim P(n\lambda) TP(nλ),假设其无偏估计为 h ( T ) h(T) h(T),则
    P ( T = k ) = ( n λ ) k k ! e − n λ , E ( h ( T ) ) = e − n λ ∑ k = 0 ∞ h ( k ) ( n λ ) k k ! = λ r . ∑ k = 0 ∞ h ( k ) ( n λ ) k k ! = λ r e n λ ∑ k = 0 ∞ h ( k ) ( n λ ) k k ! = λ r ∑ l = 0 ∞ ( n λ ) l l ! = ∑ l = r ∞ n l − r λ l ( l − r ) ! ⇓ h ( t ) = { 0 , t ≤ r − 1 ; t ! ( t − r ) ! n r , t ≥ r . \mathbf P(T=k)=\frac{(n\lambda)^k}{k!}e^{-n\lambda},\\ E(h(T))=e^{-n\lambda }\sum_{k=0}^\infty h(k)\frac{(n\lambda)^k}{k!}=\lambda^r.\\ \begin{aligned} \sum_{k=0}^\infty h(k)\frac{(n\lambda)^k}{k!}=&\lambda ^r e^{n\lambda}\\ \sum_{k=0}^\infty h(k)\frac{(n\lambda)^k}{k!}=&\lambda^r\sum_{l=0}^{\infty}\frac{(n\lambda)^l}{l!}=\sum_{l=r}^\infty \frac{n^{l-r}\lambda^l}{(l-r)!}\\ \Downarrow\\ \end{aligned}\\ h(t)=\left\{ \begin{array}{l} 0,&t\le r-1 ;\\ \frac{t!}{(t-r)!n^r},&t\ge r. \end{array} \right. P(T=k)=k!(nλ)kenλ,E(h(T))=enλk=0h(k)k!(nλ)k=λr.k=0h(k)k!(nλ)k=k=0h(k)k!(nλ)k=λrenλλrl=0l!(nλ)l=l=r(lr)!nlrλlh(t)={0,(tr)!nrt!,tr1;tr.
    λ r \lambda^r λr的UMVUE为
    T ( T − 1 ) ⋯ ( T − r + 1 ) n r \frac{T(T-1)\cdots(T-r+1)}{n^r} nrT(T1)(Tr+1)


C-R不等式给出了无偏估计的方差下界,这个方差下界是有条件且不一定能达到的。首先,要计算某个待估参数的C-R下界,要求总体分布族是正则的,且积分与求导可交换。即:

  1. 参数空间 Θ \Theta Θ是直线上的开区间;
  2. 分布族中所有密度函数共支撑;
  3. 密度函数 f ( x , θ ) f(x,\theta) f(x,θ)关于 θ \theta θ的一阶导存在;
  4. 积分与微分运算可交换;
  5. I ( θ ) = E [ ∂ log ⁡ f ( X , θ ) ∂ θ ] 2 < ∞ I(\theta)=E[\frac{\partial \log f(X,\theta)}{\partial \theta}]^2<\infty I(θ)=E[θlogf(X,θ)]2<
  6. 对于 g ( θ ) g(\theta) g(θ)的任一无偏估计 g ^ ( X ) \hat g(\boldsymbol X) g^(X),其期望在积分号下可对 θ \theta θ求导数。

以上几个条件不好验证,但如果总体分布族是指数族,则以上条件都成立。在这种情况下,C-R不等式表现为:
D g ^ ( X ) ≥ ( g ′ ( θ ) ) 2 n I ( θ ) , ∀ θ ∈ Θ I ( θ ) = E [ ∂ ln ⁡ f ( X , θ ) ∂ θ ] 2 = − E ( ∂ 2 ln ⁡ f ( X , θ ) ∂ θ 2 ) D\hat g(\boldsymbol X)\ge\frac{(g'(\theta))^2}{nI(\theta)},\forall \theta \in\Theta\\ I(\theta)=E\left[ \frac{\partial \ln f(X,\theta)}{\partial \theta} \right]^2 =-E\left( \frac{\partial^2\ln f(X,\theta)}{\partial\theta^2} \right) Dg^(X)nI(θ)(g(θ))2,θΘI(θ)=E[θlnf(X,θ)]2=E(θ22lnf(X,θ))
注意,信息函数中是对总体密度函数求对数而不是样本联合密度函数。特别当 g ( θ ) = θ g(\theta)=\theta g(θ)=θ时,其C-R下界为 ( n I ( θ ) ) − 1 (nI(\theta))^{-1} (nI(θ))1

在待估参数的C-R下界存在时,就可以计算无偏估计的效率了,为了使效率介于0到1之间,取效率为
e g ^ ( θ ) = ( g ′ ( θ ) ) 2 n I ( θ ) D ( g ^ ) e_{\hat g}(\theta)=\frac{(g'(\theta))^2}{nI(\theta)D(\hat g)} eg^(θ)=nI(θ)D(g^)(g(θ))2
如果 e g ^ = 1 e_{\hat g}=1 eg^=1,则称无偏估计 g ^ \hat g g^是有效估计;如果随着 n n n的增长 e g ^ e_{\hat g} eg^趋向于1,则称 g ^ \hat g g^为渐进有效估计。由于C-R下界并不总能达到,所以待估参数并不总是存在有效估计。但是,达到C-R下界的无偏估计一定是UMVUE。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值