01.第一章 事件及其概率(1)

第一章 事件及其概率(1)

1.概率的统计定义

将自然界中的事件分为两种:一种是发生结果确定的,可以分为必然事件与不可能事件;另一种则是某个结果可能发生也可能不发生,称为随机事件。对于某种试验,可能出现多种可能结果,出现的每个结果称为随机事件,简称事件。不同事件发生的可能性有大有小,这种可能性大小的量化指标称为事件的概率

对于可以重复进行的试验,如果每一次试验之间互不影响,那么,如果 N N N次试验中发生了 n n n次事件 A A A,则称 A A A N N N次试验中出现的频率为 F N ( A ) = n N F_N(A)=\frac nN FN(A)=Nn。随着 N N N的增大,频率会收敛于一个常数 P ( A ) P(A) P(A),将这个常数称为事件 A A A发生的概率,这就是概率的统计定义

事件的频率与概率都具有三个基本性质:

  1. 非负性: F A ( N ) ≥ 0 , P ( A ) ≥ 0 F_A(N)\ge 0,P(A)\ge 0 FA(N)0,P(A)0
  2. 规范性:对必然事件 Ω \Omega Ω,有 F N ( Ω ) = 1 , P ( Ω ) = 1 F_N(\Omega)=1,P(\Omega)=1 FN(Ω)=1,P(Ω)=1
  3. 可加性:对两个不会同时发生的事件 A , B A,B A,B,记 A + B A+B A+B A A A B B B至少出现其一这一事件,则 F N ( A + B ) = F N ( A ) + F N ( B ) , P ( A + B ) = P ( A ) + P ( B ) F_N(A+B)=F_N(A)+F_N(B),P(A+B)=P(A)+P(B) FN(A+B)=FN(A)+FN(B),P(A+B)=P(A)+P(B)。这一性质可以推广到任意有限个事件。

2.古典概型与几何概型

样本空间与样本点:对于某一个随机试验,将每一个可能发生的事件用一个样本点 ω i \omega_i ωi代替,则所有这样的样本点构成样本空间 Ω \Omega Ω,即
Ω = { ω 1 , ω 2 , ⋯   , ω n } \Omega=\{\omega_1,\omega_2,\cdots,\omega_n\} Ω={ω1,ω2,,ωn}
当然,并不是所有的样本空间中包含的样本点都是有限的或者可列的,但对于每一次试验,一定会发生有且仅有一个样本点。对同一个问题,可以设置不同的样本空间和样本点,在讨论具体问题前要先明确样本空间和样本点。

有两类特殊的样本空间,分别对应着古典概型和几何概型。

古典概型的特点是:样本空间是有限的,且每个样本点发生的概率相同。这样,如果样本空间含 n n n个样本点,且事件 A A A恰好包含其中的 m m m个样本点,则有
P ( A ) = m n = A 包 含 的 样 本 点 数 样 本 空 间 中 样 本 点 的 总 数 P(A)=\frac mn=\frac{A包含的样本点数}{样本空间中样本点的总数} P(A)=nm=A
古典概型还可以推广到每个样本点发生概率不同的情况,如果 Ω = { ω 1 , ⋯   , ω n } \Omega=\{\omega_1,\cdots,\omega_n\} Ω={ω1,,ωn},且样本点 ω i \omega_i ωi发生的概率为 p i > 0 p_i>0 pi>0 ∑ i = 1 n p i = 1 \sum\limits_{i=1}^n p_i=1 i=1npi=1。这样,事件 A A A的概率可以写成
P ( A ) = ∑ i : ω i ∈ A p i P(A)=\sum_{i:\omega_i\in A}p_i P(A)=i:ωiApi
几何概型的样本空间 Ω \Omega Ω是一个包含无限个点的区域(维数不限),样本点是区域中的每一个点,这样,如果事件 A g A_g Ag包含的样本点构成区域 g g g,则有
P ( A g ) = g 的 测 度 Ω 的 测 度 P(A_g)=\frac{g的测度}{\Omega的测度} P(Ag)=Ωg

3.概率的公理化定义

现在将样本空间看作讨论问题的全集 Ω \Omega Ω,样本点是集合中的元素,那么事件可以被定义为样本点的集合。如果某一次实验中样本点 ω \omega ω出现且 ω ∈ A \omega\in A ωA,则称事件 A A A发生。同时将 Ω \Omega Ω看成必然事件, ∅ \emptyset 看成不可能事件,则每一个样本点的集合对应一个事件,这样就可以用集合论的方法来研究事件。

类似集合,定义事件之间的关系:

  • A ⊃ B A\supset B AB A A A包含 B B B,即 ∀ ω ∈ B , ω ∈ A \forall \omega \in B,\omega \in A ωB,ωA
  • A = B A=B A=B A A A B B B相等,即 A ⊃ B , B ⊃ A A\supset B,B\supset A AB,BA
  • A ∪ B A\cup B AB A A A B B B的并事件,即 A , B A,B A,B至少发生一个。
  • A ∩ B A\cap B AB A A A B B B的交事件,即 A , B A,B A,B都发生,也记作 A B AB AB
  • A ∖ B A\setminus B AB A A A B B B的差事件,即 A A A发生但 B B B不发生。如果有 B ⊂ A B\sub A BA,则也可以记作 A − B A-B AB
  • A ∩ B = ∅ A\cap B=\empty AB=:代表 A , B A,B A,B不会同时发生,即互不相容。
  • A ˉ \bar A Aˉ:代表 A A A的逆(对立)事件,即 A A A不发生。

关于这些事件间关系,有以下的运算关系:

  • A ∪ B = B ∪ A A\cup B=B\cup A AB=BA A B = B A AB=BA AB=BA
  • ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A\cup B)\cup C=A\cup (B\cup C) (AB)C=A(BC) ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
  • ( A ∪ B ) C = A C ∪ B C (A\cup B)C=AC\cup BC (AB)C=ACBC ( A B ) ∪ C = ( A ∪ C ) ( B ∪ C ) (AB)\cup C=(A\cup C)(B\cup C) (AB)C=(AC)(BC)
  • A ∪ B ‾ = A ˉ B ˉ \overline {A\cup B}=\bar A\bar B AB=AˉBˉ A B ‾ = A ˉ ∪ B ˉ \overline {AB}=\bar A \cup \bar B AB=AˉBˉ
  • A ∖ B = A B ˉ A\setminus B=A \bar B AB=ABˉ

运用以上事件之间的运算关系,可以由一系列基本事件表达复杂事件。

用集合定义了事件以后,就可以描述概率空间了。概率空间是一个由样本空间、事件域、概率组成的三元组 ( Ω , F , P ) (\Omega,\mathscr F,P) (Ω,F,P)

这里 Ω \Omega Ω是样本空间,也就是样本点的全体,根据问题适当选择。

F \mathscr F F是事件域,也就是事件的集合,而事件又是样本点的集合,也就是说 F \mathscr F F中的元素都是由样本点构成的集合。同时,一个事件域 F \mathscr F F还需要满足以下条件:

  • Ω ∈ F \Omega \in \mathscr F ΩF
  • A ∈ F A\in \mathscr F AF,则有 A ˉ ∈ F \bar A\in \mathscr F AˉF
  • A 1 , ⋯   , A n , ⋯ ∈ F A_1,\cdots,A_n,\cdots\in \mathscr F A1,,An,F,则 ⋃ i = 1 ∞ A i ∈ F \bigcup\limits_{i=1}^\infty A_i\in \mathscr F i=1AiF

满足以上三个条件的事件域 F \mathscr F F称为 σ \sigma σ-代数。并且可以推出对于任何一个事件域,必然事件、不可能事件、事件的逆、有限并、有限交、可列无限并、可列无限交等等在事件域内。最小的事件域是 { Ω , ∅ } \{\Omega ,\empty\} {Ω,}

  • 有一种特殊的 σ \sigma σ-代数称为(一维)Borel σ \sigma σ-代数,它的样本空间是 Ω = R \Omega=\R Ω=R,取一切左开右闭区间以及它们的并、交、逆所构成的集合为事件域 F \mathscr F F,这样的事件域 F \mathscr F F称为Borel σ \sigma σ-代数。
  • 对于样本空间 Ω \Omega Ω为有限或可列个样本点组成的情况,常常取事件域 F \mathscr F F为一切 Ω \Omega Ω的子集构成的集合。
  • 如果只对 Ω \Omega Ω的一个子集 A A A感兴趣,则包含 A A A的最小 σ \sigma σ-代数是 { ∅ , A , A ˉ , Ω } \{\empty,A,\bar A,\Omega\} {,A,Aˉ,Ω}

概率 P P P指的是定义在 F \mathscr F F上的函数 A ↦ P A\mapsto P AP,并且满足:

  • 非负性: P ( A ) ≥ 0 P(A)\ge 0 P(A)0
  • 规范性: P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
  • 可列可加性:若 A 1 , ⋯   , A n , ⋯ A_1,\cdots,A_n,\cdots A1,,An,两两不相容,则 P ( ∑ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\sum\limits_{i=1}^n A_i)=\sum\limits_{i=1}^n P(A_i) P(i=1nAi)=i=1nP(Ai)

需要注意的是,概率的公理化定义并不能简化事件概率的计算,只是为概率理论奠定了基础,因此只需要能识别并区分样本空间、事件域以及明确概率是定义在事件域上的函数即可。

由于事件用集合来定义,再结合概率的基本性质,可以推导出事件的概率具有以下的性质:

  1. P ( ∅ ) = 0 P(\empty )=0 P()=0,由于 Ω = Ω + ∅ + ∅ + ⋯ \Omega=\Omega+\empty+\empty+\cdots Ω=Ω+++,对两边同时求概率并由不相容事件的可列可加性,可以得到
    P ( Ω ) = P ( Ω ) + P ( ∅ ) + P ( ∅ ) + ⋯ P(\Omega)=P(\Omega)+P(\empty)+P(\empty)+\cdots P(Ω)=P(Ω)+P()+P()+
    又由于概率的非负性,有 P ( ∅ ) = 0 P(\empty)=0 P()=0

  2. 有限可加性:对于不相容的一列事件 A 1 , ⋯   , A n A_1,\cdots,A_n A1,,An,有
    P ( ∑ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\sum_{i=1}^n A_i)=\sum_{i=1}^n P(A_i) P(i=1nAi)=i=1nP(Ai)
    只要将有限事件列扩展为无限事件列 A 1 , ⋯   , A n , ∅ , ⋯ A_1,\cdots,A_n,\empty,\cdots A1,,An,,即可。

  3. B ⊂ A B\sub A BA,则 P ( A − B ) = P ( A ) − P ( B ) P(A-B)=P(A)-P(B) P(AB)=P(A)P(B)。只需令 A = B + ( A − B ) A=B+(A-B) A=B+(AB),显然有 B B B A − B A-B AB不相容,那么有 P ( A ) = P ( B ) + P ( A − B ) P(A)=P(B)+P(A-B) P(A)=P(B)+P(AB)

  4. P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB),这里 A ∪ B = A ∪ ( B − A B ) A\cup B=A\cup (B-AB) AB=A(BAB),且 A ∩ ( B − A B ) = ∅ , A B ⊂ B A\cap (B-AB)=\empty,AB\sub B A(BAB)=,ABB,于是
    P ( A ∪ B ) = P ( A ) + P ( B − A B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(BAB)=P(A)+P(B)P(AB)

  5. 多还少补定理:
    P ( A 1 ∪ ⋯ ∪ A n ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ⋯ + ( − 1 ) n − 1 P ( A 1 ⋯ A n ) P(A_1\cup\cdots\cup A_n)=\sum_{i=1}^n P(A_i)-\sum_{1\le i<j\le n} P(A_i A_j)+\cdots+(-1)^{n-1}P(A_1\cdots A_n) P(A1An)=i=1nP(Ai)1i<jnP(AiAj)++(1)n1P(A1An)
    可以从4由归纳法证明。

  6. 次可加性: P ( ⋃ i = 1 N A i ) ≤ ∑ i = 1 N P ( A i ) P(\bigcup\limits_{i=1}^N A_i)\le \sum\limits_{i=1}^N P(A_i) P(i=1NAi)i=1NP(Ai)

概率测度具有连续性,这指的是对于一系列单调增加的事件序列 A 1 ⊂ A 2 ⊂ ⋯ ⊂ A n ⊂ ⋯ A_1\sub A_2\sub\cdots\sub A_n\sub \cdots A1A2An,具有极限 A A A,即 lim ⁡ n → ∞ A n = ⋃ i = 1 ∞ A i = A \lim\limits_{n\to \infty} A_n=\bigcup\limits_{i=1}^\infty A_i =A nlimAn=i=1Ai=A,则有
P ( lim ⁡ n → ∞ A n ) = P ( A ) = lim ⁡ n → ∞ P ( A n ) P(\lim_{n\to \infty }A_n)=P(A)=\lim_{n\to \infty }P(A_n) P(nlimAn)=P(A)=nlimP(An)
同理对于一列单调减少的事件序列 A 1 ⊃ A 2 ⊃ ⋯ ⊃ A n ⊃ ⋯ A_1\supset A_2\supset \cdots\supset A_n \supset \cdots A1A2An,具有极限 A A A,即 lim ⁡ n → ∞ A n = ⋂ i = 1 ∞ A i = A \lim\limits_{n\to \infty}A_n=\bigcap\limits_{i=1}^\infty A_i=A nlimAn=i=1Ai=A,同样有
P ( lim ⁡ n → ∞ A n ) = P ( A ) = lim ⁡ n → ∞ P ( A n ) P(\lim_{n\to \infty} A_n)=P(A)=\lim_{n\to \infty }P(A_n) P(nlimAn)=P(A)=nlimP(An)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值