02.第一章 事件及其概率(2)

第一章 事件及其概率(2)

1.条件概率

在之前所讨论的事件发生的概率,都是在一些基本条件下发生的。如果除了基本条件以外还有附加条件,则事件发生的概率会发生改变。这里,常常将附加条件描述为“一个事件发生”,如事件 B B B,而在事件 B B B发生的条件下 A A A发生的概率,就称作事件 A A A关于事件 B B B的条件概率,记作 P ( A ∣ B ) P(A|B) P(AB)

  • 注意,要计算概率的事件写在前面,作为附加条件而视作发生的事件写在竖线后边。
  • 由于在概率的公理化定义中,我们把事件也看成了样本点的集合,因此在事件 B B B发生的前提下,我们要考虑的样本空间,就是 B B B包含的样本点的集合。也就是说,条件概率可以看作是样本空间的压缩,自然会影响事件发生的概率。

从样本空间的角度看,很容易得到以下结论
P ( A ∣ B ) = A B 包 含 的 样 本 点 数 B 包 含 的 样 本 点 数 = A B 包 含 的 样 本 点 数 / 样 本 点 总 数 B 包 含 的 样 本 点 数 / 样 本 点 总 数 = P ( A B ) P ( B ) . \begin{aligned} &P(A|B)\\ =&\frac{AB包含的样本点数}{B包含的样本点数}\\ =&\frac{AB包含的样本点数/样本点总数}{B包含的样本点数/样本点总数}\\ =&\frac{P(AB)}{P(B)}. \end{aligned} ===P(AB)BABB/AB/P(B)P(AB).
而如果 P ( B ) = 0 P(B)=0 P(B)=0,显然有 P ( A ∣ B ) = 0 P(A|B)=0 P(AB)=0,所以条件概率的公式往往写成
P ( A B ) = P ( A ∣ B ) P ( B ) . P(AB)=P(A|B)P(B). P(AB)=P(AB)P(B).
这个式子,具有很明显的链性,所以被称为条件概率的链式法则。可以往多个事件推导,得到
P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) ⋯ P ( A n ∣ A 1 ⋯ A n − 1 ) . P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)\cdots P(A_n|A_1\cdots A_{n-1}). P(A1A2An)=P(A1)P(A2A1)P(AnA1An1).

2.全概率公式与Bayes公式

全概率公式与Bayes公式,是与条件相关的两个非常重要的公式。

全概率公式基于完备事件组的概念,而完备事件组,指的是一系列互不相容的事件,但每次试验必定发生这些事件中的一个。即互不相容的一列事件 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An,满足 P ( A i ) > 0 , ∑ i = 1 n A i = Ω P(A_i)>0,\sum\limits_{i=1}^nA_i=\Omega P(Ai)>0,i=1nAi=Ω。如果用样本空间的角度来看,就是将样本空间中的样本点分割为几部分(即几个集合),这几个集合构成的事件组成一个完备事件组。

对于完备事件组 A 1 , ⋯   , A n , ⋯ A_1,\cdots,A_n,\cdots A1,,An,与任意事件 B B B,全概率公式指的是
P ( B ) = ∑ i = 1 ∞ P ( A i ) P ( B ∣ A i ) . P(B)=\sum_{i=1}^\infty P(A_i )P(B|A_i). P(B)=i=1P(Ai)P(BAi).
直观上看,全概率公式是将一个具体事件看作依赖于完备事件组的事件,即在几种不同条件下 B B B的条件概率,对条件本身发生概率的加权平均。证明如下:
P ( B ) = P ( B ∑ i = 1 n A i ) = P ( ∑ i = 1 n A i B ) = ∑ i = 1 n P ( A i B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) . P(B)=P(B\sum_{i=1}^n A_i)=P(\sum_{i=1}^n A_iB)=\sum_{i=1}^n P(A_iB)=\sum_{i=1}^n P(A_i)P(B|A_i ). P(B)=P(Bi=1nAi)=P(i=1nAiB)=i=1nP(AiB)=i=1nP(Ai)P(BAi).
Bayes公式,描述的是一种“后验”概率。后验的意思是,由于一个事件的直接发生概率与条件概率是不一样的,在某事件发生的条件下对某事件发生的概率会产生影响,因此,在事件 B B B不确定是否发生之前的概率 P ( A ) P(A) P(A)称为事件 A A A的先验概率,而在确认事件 B B B确实发生的概率 P ( A ∣ B ) P(A|B) P(AB)称为事件 A A A的后验概率。Bayes公式就是联系先验概率和后验概率的桥梁,它可以由全概率公式推导而来,同样也依赖于完备事件组。
P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) ∑ k = 1 n P ( A k ) P ( B ∣ A k ) . P(A_i|B)=\frac{P(A_i)P(B|A_i)}{\sum\limits_{k=1}^n P(A_k)P(B|A_k)}. P(AiB)=k=1nP(Ak)P(BAk)P(Ai)P(BAi).
观察可以发现,Bayes最终求出的概率,是在后验事件 B B B发生后完备事件组中事件的发生概率,而这个概率的计算,需要后验事件 B B B在各个条件 A i A_i Ai下的条件概率。也就是说,Bayes公式的适用范围是计算完备事件组中事件的后验概率,更多时候,可以把Bayes公式看成是计算“完备事件组中各事件对事件 B B B发生起到的贡献(促因)大小”的公式,由于 B B B的发生是观测事件的结果,所以Bayes公式也有从结果倒推原因的作用。

在决策领域,Bayes公式也起到原因分担的作用,立足于Bayes理论的决策方式被称为Bayes决策。

3.事件独立性

两个事件独立,指的是这两个事件的发生情况,不会互相影响对方的发生概率,这可以归结为
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) = P ( B ) . P(A|B)=P(A)\\ P(B|A)=P(B). P(AB)=P(A)P(BA)=P(B).
但如果对上述两式稍作变形,就可以得到一个共同的式子:
P ( A B ) = P ( A ) ⋅ P ( B ) . P(AB)=P(A)\cdot P(B). P(AB)=P(A)P(B).
这种情况下,称 A A A B B B独立。如果 A A A B B B不是独立的,则它们是相依的。一般我们用 P ( A B ) P(AB) P(AB) P ( A ) P ( B ) P(A)P(B) P(A)P(B)的关系来判断两个事件是否独立,因为它对零概率事件依然适用。

有了事件独立的定义后,对于两个事件域 σ \sigma σ-代数),也有类似的独立性定义。如果对任意事件 A 1 ∈ F 1 , A 2 ∈ F 2 A_1\in \mathscr F_1,A_2\in \mathscr F_2 A1F1,A2F2,都有 P ( A 1 ) P ( A 2 ) = P ( A 1 ) P ( A 2 ) P(A_1)P(A_2)=P(A_1)P(A_2) P(A1)P(A2)=P(A1)P(A2),则称两个事件域独立。表面上看,两个事件域独立的条件不好验证,但可以从常识来判断。

  • 如果 A A A B B B独立,可以看出 A ˉ \bar A Aˉ B B B也是独立的,进而 A ˉ \bar A Aˉ B ˉ \bar B Bˉ A A A B ˉ \bar B Bˉ都是独立的。要证明这个结论,有
    P ( A B ˉ ) = P ( A − A B ) = P ( A ) − P ( A B ) = P ( A ) ( 1 − P ( B ) ) = P ( A ) P ( B ˉ ) . \begin{aligned} P(A \bar B)=&P(A-AB)\\ =&P(A)-P(AB)\\ =&P(A)(1-P(B))\\ =&P(A)P(\bar B). \end{aligned} P(ABˉ)====P(AAB)P(A)P(AB)P(A)(1P(B))P(A)P(Bˉ).
    这样就得到事件域 { ∅ , A , A ˉ , Ω } \{\empty, A, \bar A, \Omega\} {,A,Aˉ,Ω} { ∅ , B , B ˉ , Ω } \{\empty, B, \bar B, \Omega\} {,B,Bˉ,Ω}独立,这是构造两个独立 σ \sigma σ-代数的最简单方法。

要将事件独立性的概念推广到多个事件,除了两两间的独立性,还需要保证整体的独立性。如三个事件 A , B , C A,B,C A,B,C的独立的等价条件是
P ( A ) P ( B ) = P ( A B ) P ( A ) P ( C ) = P ( A C ) P ( B ) P ( C ) = P ( B C ) P ( A ) P ( B ) P ( C ) = P ( A B C ) . P(A)P(B)=P(AB)\\ P(A)P(C)=P(AC)\\ P(B)P(C)=P(BC)\\ P(A)P(B)P(C)=P(ABC). P(A)P(B)=P(AB)P(A)P(C)=P(AC)P(B)P(C)=P(BC)P(A)P(B)P(C)=P(ABC).
而对于 n n n个事件 A 1 , ⋯   , A n A_1,\cdots,A_n A1,,An,其整体独立等价于
P ( A i A j ) = P ( A i ) P ( A j ) , ∀ i < j ; P ( A i A j A k ) = P ( A i ) P ( A j ) P ( A k ) , ∀ i < j < k ; ⋯ P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ) ⋯ P ( A n ) P(A_i A_j)=P(A_i)P(A_j),\quad \forall i< j;\\ P(A_i A_j A_k)=P(A_i)P(A_j)P(A_k),\quad \forall i<j<k;\\ \cdots\\ P(A_1A_2\cdots A_n)=P(A_1)P(A_2)\cdots P(A_n) P(AiAj)=P(Ai)P(Aj),i<j;P(AiAjAk)=P(Ai)P(Aj)P(Ak),i<j<k;P(A1A2An)=P(A1)P(A2)P(An)
一共有 2 n − n − 1 2^n -n-1 2nn1个式子要满足。要注意,由两两独立是不能推出三个事件独立的。

由多个事件的独立性,也可以同样推广得到多个事件域( σ \sigma σ-代数)的独立性。

事件独立,又可以推广到试验独立。随机试验的独立,指的是对 n n n个试验 E 1 , ⋯   , E n E_1,\cdots,E_n E1,,En,每次试验会出现一个可能结果 A 1 , ⋯   , A n A_1,\cdots,A_n A1,,An,如果对任意的这些事件它们之间都是相互独立的,就称随机试验组 E 1 , ⋯   , E n E_1,\cdots,E_n E1,,En相互独立。比较重要的独立试验是重复独立试验,它指的是将同一个试验反复进行多次,并且试验之间相互独立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值