03.第三章 Poisson过程(1)

第三章 Poisson过程(1)

1.Poisson过程的定义

N ( s , t ] N(s,t] N(s,t] ( s , t ] (s,t] (s,t]时间段内事件发生的次数,也就是一个计数过程, N ( t ) = N ( 0 , t ] N(t)=N(0,t] N(t)=N(0,t],则满足以下要求的随机过程 N = ( N ( t ) , t ≥ 0 ) \boldsymbol N =(N(t),t\ge 0) N=(N(t),t0)是Poisson过程:

  1. 初始条件: N ( 0 ) = 0 , N ( t ) ≥ 0 N(0)=0,N(t)\ge 0 N(0)=0,N(t)0

  2. 独立增量:对任意 0 < t 1 < ⋯ < t k 0<t_1<\cdots<t_k 0<t1<<tk,有 N ( t 1 ) , N ( t 2 ) − N ( t 1 ) , ⋯   , N ( t k ) − N ( t k − 1 ) N(t_1),N(t_2)-N(t_1),\cdots,N(t_k)-N(t_{k-1}) N(t1),N(t2)N(t1),,N(tk)N(tk1)相互独立;

  3. 平稳增量:对任意 s < t s<t s<t N ( t ) − N ( s ) N(t)-N(s) N(t)N(s) N ( t − s ) N(t-s) N(ts)具有相同的分布;

  4. 稀有性:存在一个正常数 λ > 0 \lambda >0 λ>0,使得对任何 t > 0 t>0 t>0
    P ( N ( t , t + Δ ( t ) ) = 1 ) = λ Δ ( t ) + o ( Δ ( t ) ) P ( N ( t , t + Δ ( t ) ) ≥ 1 ) = o ( Δ ( t ) ) P(N(t,t+\Delta(t))=1)=\lambda \Delta(t)+o(\Delta (t))\\ P(N(t,t+\Delta(t))\ge1)=o(\Delta(t)) P(N(t,t+Δ(t))=1)=λΔ(t)+o(Δ(t))P(N(t,t+Δ(t))1)=o(Δ(t))
    这里 Δ ( t ) \Delta(t) Δ(t)是一个相对小的时间增量,意味着在微小时刻几乎不可能同时发生两个及以上的事件。

由以上1~4条件保证的泊松过程,满足以下的分布规律:
P ( N ( t ) = k ) = ( λ t ) k k ! e − λ t , k = 0 , 1 , 2 , ⋯ P(N(t)=k)=\frac{(\lambda t)^k}{k!}e^{-\lambda t},\quad k=0,1,2,\cdots P(N(t)=k)=k!(λt)keλt,k=0,1,2,
要证明这个结论,将 [ 0 , t ] [0,t] [0,t]区间划分成 n n n个小区间,使得每个区间长度为 t / n t/n t/n足够小,这样 P ( N ( t ) = k ) P(N(t)=k) P(N(t)=k)就相当于 n n n个小区间中有 k k k个小区间取1,剩下的取0(由稀缺性,每个小区间不超过2)。由独立增量性,每个小区间互相独立且同分布,即
P ( N ( t / n ) = 1 ) = λ t n + o ( t n ) , P ( N ( t / n ) = 0 ) = 1 − λ t n + o ( t n ) , P ( N ( t ) = k ) = lim ⁡ n → ∞ C n k ( λ t n + o ( t n ) ) k ( 1 − λ t n + o t n ) n − k = lim ⁡ n → ∞ n ! ( n − k ) ! n k ( λ t ) k k ! e − ( n − k ) λ t n = ( λ t ) k k ! e − λ t \begin{aligned} P(N(t/n)=1)=&\frac{\lambda t}{n}+o(\frac tn),\\ P(N(t/n)=0)=&1-\frac{\lambda t}{n}+o(\frac tn),\\ \\ P(N(t)=k)=&\lim_{n\to \infty}C_n^k (\frac{\lambda t}{n}+o(\frac tn))^k(1-\frac{\lambda t}{n}+o\frac{t}{n})^{n-k}\\ =&\lim_{n\to \infty }\frac{n!}{(n-k)!n^k}\frac{(\lambda t)^k}{k!}e^{-\frac{(n-k)\lambda t}{n}}\\ =&\frac{(\lambda t)^k}{k!}e^{-\lambda t} \end{aligned} P(N(t/n)=1)=P(N(t/n)=0)=P(N(t)=k)===nλt+o(nt),1nλt+o(nt),nlimCnk(nλt+o(nt))k(1nλt+ont)nknlim(nk)!nkn!k!(λt)ken(nk)λtk!(λt)keλt
可以看到,参数为 λ \lambda λ的泊松过程 N \boldsymbol N N,有 N ( t ) ∼ P ( λ t ) N(t)\sim P(\lambda t) N(t)P(λt)

2.泊松过程的基本性质

由于泊松过程 N = ( N ( t ) , t ∈ T ) \boldsymbol N=(N(t),t\in T) N=(N(t),tT)满足 N ( t ) ∼ P ( λ t ) N(t)\sim P(\lambda t) N(t)P(λt),因此计算泊松过程的均值、方差和特征函数如下:
μ N ( t ) = E ( N ( t ) ) = λ t , σ N 2 ( t ) = D ( N ( t ) ) = λ t , ϕ N ( t ) ( x ) = E e i x N ( t ) = ∑ k = 0 ∞ e i x k ( λ t ) k k ! e − λ t = e − λ t ∑ k = 0 ∞ ( e i x λ t ) k k ! = e λ t ( e i x − 1 ) \mu_N(t)=E(N(t))=\lambda t,\\ \sigma^2_N(t)=D(N(t))=\lambda t,\\ \begin{aligned} &\phi_{N(t)}(x)=Ee^{ixN(t)}\\=&\sum_{k=0}^\infty e^{ixk}\frac{(\lambda t)^k}{k!}e^{-\lambda t}\\ =&e^{-\lambda t}\sum_{k=0}^\infty \frac{(e^{ix}\lambda t)^k}{k!}\\ =&e^{\lambda t(e^{ix}-1)} \end{aligned} μN(t)=E(N(t))=λt,σN2(t)=D(N(t))=λt,===ϕN(t)(x)=EeixN(t)k=0eixkk!(λt)keλteλtk=0k!(eixλt)keλt(eix1)
因此 λ = E [ N ( t ) ] / t \lambda =E[N(t)]/t λ=E[N(t)]/t,如果将此计数过程看作一个服务系统,则参数 λ \lambda λ表明服务的平均繁忙程度。

下面假设 s < t s<t s<t,计算泊松过程的自相关函数和自协方差函数如下:
r N ( s , t ) = E [ N ( s ) N ( t ) ] = E [ N ( s ) N ( t − s + s ) ] = E [ N ( s ) N ( t − s ) ] + E [ N ( s ) ] 2 = E [ N ( s ) ] E [ N ( t − s ) ] + D [ N ( s ) ] + [ E N ( s ) ] 2 = λ s λ ( t − s ) + λ s + ( λ s ) 2 = λ 2 s t + λ s C o v N ( s , t ) = r N ( s , t ) − μ N ( s ) μ N ( t ) = λ 2 s t + λ s − λ 2 s t = λ s \begin{aligned} &r_N(s,t)=E[N(s)N(t)]\\ =&E[N(s)N(t-s+s)]\\ =&E[N(s)N(t-s)]+E[N(s)]^2\\ =&E[N(s)]E[N(t-s)]+D[N(s)]+[EN(s)]^2\\ =&\lambda s\lambda (t-s)+\lambda s+(\lambda s)^2\\ =&\lambda^2st+\lambda s\\ \\ &Cov_N(s,t)=r_N(s,t)-\mu_N(s)\mu_N(t)\\ =&\lambda^2st+\lambda s-\lambda^2 st\\ =&\lambda s \end{aligned} =======rN(s,t)=E[N(s)N(t)]E[N(s)N(ts+s)]E[N(s)N(ts)]+E[N(s)]2E[N(s)]E[N(ts)]+D[N(s)]+[EN(s)]2λsλ(ts)+λs+(λs)2λ2st+λsCovN(s,t)=rN(s,t)μN(s)μN(t)λ2st+λsλ2stλs
如果没给定 s , t s,t s,t的大小关系,则 C o v N ( s , t ) = λ ( m ∧ n ) Cov_N(s,t)=\lambda(m\land n) CovN(s,t)=λ(mn),这里 ∧ \land 表示两者取小, ∨ \lor 表示两者取大。

接下来计算Poisson过程的联合分布,由于其具有独立增量性,所以
P ( N ( t 1 ) = k 1 , ⋯   , N ( t m ) = k m ) = P ( N ( t 1 ) = k 1 ) ⋯ P ( N ( t m ) − N ( t m − 1 ) = k m − k m − 1 ) = ( λ t 1 ) k 1 k 1 ! [ λ ( t 2 − t 1 ) ] k 2 − k 1 ( k 2 − k 1 ) ! ⋯ [ λ ( t m − t m − 1 ) ] k m − k m − 1 ( k m − k m − 1 ) ! e − λ t m \begin{aligned} &P(N(t_1)=k_1,\cdots,N(t_m)=k_m)\\ =&P(N(t_1)=k_1)\cdots P(N(t_m)-N(t_{m-1})=k_m-k_{m-1})\\ =&\frac{(\lambda t_1)^{k_1}}{k_1!}\frac{[\lambda(t_2-t_1)]^{k_2-k_1}}{(k_2-k_1)!}\cdots\frac{[\lambda(t_m-t_{m-1})]^{k_m-k_{m-1}}}{(k_m-k_{m-1})!}e^{-\lambda t_m}\\ \end{aligned} ==P(N(t1)=k1,,N(tm)=km)P(N(t1)=k1)P(N(tm)N(tm1)=kmkm1)k1!(λt1)k1(k2k1)![λ(t2t1)]k2k1(kmkm1)![λ(tmtm1)]kmkm1eλtm
对于条件分布,有两种情况,现假设 s < t , k ≤ m s<t,k\le m s<t,km,则
P ( N ( t ) = m ∣ N ( s ) = k ) = P ( N ( t ) = m , N ( s ) = k ) P ( N ( s ) = k ) = ( λ s ) k k ! e − λ s [ λ ( t − s ) ] m − k ( m − k ) ! e − λ ( t − s ) ( λ s ) k k ! e − λ s = [ λ ( t − s ) ] m − k ( m − k ) ! e − λ ( t − s ) P ( N ( s ) = k ∣ N ( t ) = m ) = P ( N ( t ) = m , N ( s ) = k ) P ( N ( t ) = m ) = ( λ s ) k k ! e − λ s [ λ ( t − s ) ] m − k ( m − k ) ! e − λ ( t − s ) ( λ t ) m m ! e − λ t = m ! k ! ( m − k ) ! s k ( t − s ) m − k t m = C m k ( s t ) k ( 1 − s t ) m − k \begin{aligned} &P(N(t)=m|N(s)=k)\\ =&\frac{P(N(t)=m,N(s)=k)}{P(N(s)=k)}\\ =&\frac{\frac{(\lambda s)^k}{k!}e^{-\lambda s}\frac{[\lambda(t-s)]^{m-k}}{(m-k)!}e^{-\lambda (t-s)}}{\frac{(\lambda s)^k}{k!}e^{-\lambda s}}\\ =&\frac{[\lambda (t-s)]^{m-k}}{(m-k)!}e^{-\lambda(t-s)} \\ \\ &P(N(s)=k|N(t)=m)\\ =&\frac{P(N(t)=m,N(s)=k)}{P(N(t)=m)}\\ =&\frac{\frac{(\lambda s)^k}{k!}e^{-\lambda s}\frac{[\lambda(t-s)]^{m-k}}{(m-k)!}e^{-\lambda (t-s)}}{\frac{(\lambda t)^m}{m!}e^{-\lambda t}}\\ =&\frac{m!}{k!(m-k)!}\frac{s^k(t-s)^{m-k}}{t^m}\\ =&C_m^k(\frac st)^k (1-\frac st)^{m-k} \end{aligned} =======P(N(t)=mN(s)=k)P(N(s)=k)P(N(t)=m,N(s)=k)k!(λs)keλsk!(λs)keλs(mk)![λ(ts)]mkeλ(ts)(mk)![λ(ts)]mkeλ(ts)P(N(s)=kN(t)=m)P(N(t)=m)P(N(t)=m,N(s)=k)m!(λt)meλtk!(λs)keλs(mk)![λ(ts)]mkeλ(ts)k!(mk)!m!tmsk(ts)mkCmk(ts)k(1ts)mk
可以看到第二个条件分布是二项分布的形式,这可以解释为 t t t时间内到达的 m m m个顾客独立选择服务,有 k k k个选择在 ( 0 , s ] (0,s] (0,s]时间段内服务,选择的概率自然是两段时间的长度比 s / t s/t s/t

3.到达时刻与时间间隔

S i S_i Si为第 i i i个事件的到达时刻,且记 S 0 = 0 S_0=0 S0=0 T i = S i − S i − 1 T_i=S_i-S_{i-1} Ti=SiSi1为第 i − 1 i-1 i1个事件和第 i i i个事件间隔。 S i , T i , N ( t ) S_i,T_i,N(t) Si,Ti,N(t)之间存在一系列关联。

S n > t S_n>t Sn>t,意味着第 n n n个事件在时刻 t t t以后发生,也就意味着 t t t时刻及以前发生的事件个数不大于 n − 1 n-1 n1,也就是
S n > t ⇔ N ( t ) ≤ n − 1 P ( S n > t ) = P ( N ( t ) ≤ n − 1 ) = ∑ k = 0 n − 1 ( λ t ) k k ! e − λ t S_n>t\Leftrightarrow N(t)\le n-1\\ P(S_n>t)=P(N(t)\le n-1)=\sum_{k=0}^{n-1}\frac{(\lambda t)^k}{k!}e^{-\lambda t} Sn>tN(t)n1P(Sn>t)=P(N(t)n1)=k=0n1k!(λt)keλt
这样就得到 S n S_n Sn的分布函数和密度函数
F S n ( t ) = P ( S n ≤ t ) = 1 − ∑ k = 0 n − 1 ( λ t ) k k ! e − λ t = e − λ t ∑ k = n ∞ ( λ t ) k k ! p S n ( t ) = F S n ′ ( t ) = − e − λ t ∑ k = n ∞ λ k + 1 t k k ! + e − λ t ∑ k = n ∞ λ k t k − 1 ( k − 1 ) ! = λ n t n − 1 ( n − 1 ) ! e − λ t = λ n Γ ( n ) t n − 1 e − λ t , t > 0 \begin{aligned} &F_{S_n}(t)=P(S_n\le t)\\ =&1-\sum_{k=0}^{n-1}\frac{(\lambda t)^k}{k!}e^{-\lambda t}\\ =&e^{-\lambda t}\sum_{k=n}^\infty \frac{(\lambda t)^k}{k!}\\ \\ &p_{S_n}(t)=F'_{S_n}(t)\\ =&-e^{-\lambda t}\sum_{k=n}^\infty \frac{\lambda ^{k+1} t^k }{k!}+e^{-\lambda t}\sum_{k=n}^\infty \frac{\lambda ^k t^{k-1}}{(k-1)!}\\ =&\frac{\lambda ^n t^{n-1}}{(n-1)!}e^{-\lambda t}\\ =&\frac{\lambda^n}{\Gamma(n)}t^{n-1}e^{-\lambda t},\quad t>0 \end{aligned} =====FSn(t)=P(Snt)1k=0n1k!(λt)keλteλtk=nk!(λt)kpSn(t)=FSn(t)eλtk=nk!λk+1tk+eλtk=n(k1)!λktk1(n1)!λntn1eλtΓ(n)λntn1eλtt>0
这里得到 S n ∼ Γ ( n , λ ) S_n\sim \Gamma(n,\lambda) SnΓ(n,λ)

同时,由于 T i = S i − S i − 1 T_i=S_i-S_{i-1} Ti=SiSi1,可以计算第 i − 1 i-1 i1个事件到第 i i i个事件的时间间隔,得到
P ( T n > t ∣ S n − 1 = s ) = P ( S n > t + s ∣ S n − 1 = s ) = P ( N ( t + s ) < n ∣ N ( s ) = n − 1 , N ( s − 0 ) < n − 1 ) = P ( N ( s , t + s ) < 1 ) = P ( N ( t ) = 0 ) = e − λ t \begin{aligned} &P(T_n>t|S_{n-1}=s)\\ =&P(S_n>t+s|S_{n-1}=s)\\ =&P(N(t+s)<n|N(s)=n-1,N(s-0)<n-1)\\ =&P(N(s,t+s)<1)\\ =&P(N(t)=0)=e^{-\lambda t} \end{aligned} ====P(Tn>tSn1=s)P(Sn>t+sSn1=s)P(N(t+s)<nN(s)=n1,N(s0)<n1)P(N(s,t+s)<1)P(N(t)=0)=eλt
这里可以看到 P ( T n > t ∣ S n = s ) P(T_n>t|S_n=s) P(Tn>tSn=s) s s s无关,因此有 T n T_n Tn S n − 1 S_{n-1} Sn1独立,并且
F T n ( t ) = 1 − P ( T n > t ) = 1 − e − λ t ; p T n ( t ) = λ e − λ t . F_{T_n}(t)=1-P(T_n>t)=1-e^{-\lambda t};\\ p_{T_n}(t)=\lambda e^{-\lambda t}. FTn(t)=1P(Tn>t)=1eλt;pTn(t)=λeλt.
这里得到 T n ∼ E ( λ ) = Γ ( 1 , λ ) T_n\sim E(\lambda )=\Gamma(1,\lambda) TnE(λ)=Γ(1,λ)。因此有这样的结论:

  1. 事件发生的间隔 T 1 , ⋯   , T n T_1,\cdots,T_n T1,,Tn为相互独立的随机变量,它们独立同分布于 E ( λ ) E(\lambda) E(λ)

  2. S n = T 1 + ⋯ + T n S_n=T_1+\cdots+T_n Sn=T1++Tn为第 n n n个事件的发生时间,它服从 Γ ( n , λ ) \Gamma(n,\lambda ) Γ(n,λ)

  3. 如果 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2,是一列独立同分布的 E ( λ ) E(\lambda) E(λ)随机变量,定义 S 0 = 0 S_0=0 S0=0 S n = ∑ i = 1 n X i S_n=\sum_{i=1}^n X_i Sn=i=1nXi N ( 0 ) = 0 N(0)=0 N(0)=0,则随机过程 N = ( N ( t ) , t ∈ T ) \boldsymbol N=(N(t),t\in T) N=(N(t),tT)是泊松过程,这里
    N ( t ) = max ⁡ { n : S n ≤ t } . N(t)=\max\{n:S_n\le t\}. N(t)=max{n:Snt}.
    要证明 N ( t ) N(t) N(t)是泊松过程,首先要证明 N ( t ) ∼ P ( λ t ) N(t)\sim P(\lambda t) N(t)P(λt),为此,有
    P ( N ( t ) = k ) = P ( S k ≤ t < S k + 1 ) = ∫ 0 t P ( t < S k + 1 ∣ S k = s ) p S k ( s ) d s = ∫ 0 t P ( X k + 1 > t − s ∣ S k = s ) p S k ( s ) d s = ∫ 0 t e − λ ( t − s ) λ k Γ ( k ) s k − 1 e − λ s d s = ( λ t ) k k ! e − λ t \begin{aligned} &P(N(t)=k)\\ =& P(S_k\le t < S_{k+1})\\ =& \int_0^tP(t<S_{k+1}|S_k=s)p_{S_k}(s)ds\\ =& \int_0^t P(X_{k+1}>t-s|S_k=s)p_{S_k}(s)ds\\ =& \int_0^t e^{-\lambda(t-s)}\frac{\lambda ^k}{\Gamma(k)}s^{k-1}e^{-\lambda s}ds\\ =&\frac{(\lambda t)^k}{k!}e^{-\lambda t} \end{aligned} =====P(N(t)=k)P(Skt<Sk+1)0tP(t<Sk+1Sk=s)pSk(s)ds0tP(Xk+1>tsSk=s)pSk(s)ds0teλ(ts)Γ(k)λksk1eλsdsk!(λt)keλt
    这里用到全概率公式: P ( A ) = ∫ − ∞ ∞ P ( A ∣ X = x ) p ( x ) d x P(A)=\int_{-\infty}^\infty P(A|X=x)p(x)dx P(A)=P(AX=x)p(x)dx

    还要证明其独立平稳增量性,即证明
    P ( N ( t ) − N ( s ) < m , N ( s ) = k ) = P ( N ( t − s ) < m ) ⋅ P ( N ( s ) = k ) P(N(t)-N(s)<m, N(s)=k)=P(N(t-s)<m)\cdot P(N(s)=k) P(N(t)N(s)<m,N(s)=k)=P(N(ts)<m)P(N(s)=k)
    这里
    P ( N ( t ) − N ( s ) < m , N ( s ) = k ) = P ( N ( t ) < k + m , N ( s ) = k ) = P ( S k + m > t , S k ≤ s < S k + 1 ) = P ( S k + m > t , S k ≤ s ) − P ( S k + m > t , S k + 1 ≤ s ) P ( S k + m > t , S k ≤ s ) = P ( S k + m − S k > t − S k , S k ≤ s ) = ∫ 0 s P ( S m > t − u ) p S k ( u ) d u \begin{aligned} &P(N(t)-N(s)<m, N(s)=k)\\ =&P(N(t)<k+m,N(s)=k)\\ =&P(S_{k+m}>t,S_k\le s<S_{k+1})\\ =& P(S_{k+m}>t,S_k \le s)-P(S_{k+m}>t,S_{k+1}\le s)\\ \\ &P(S_{k+m}>t,S_k\le s)\\ =&P(S_{k+m}-S_k >t-S_k,S_k\le s)\\ =& \int_0^s P(S_m>t-u) p_{S_k}(u)du\\ \end{aligned} =====P(N(t)N(s)<m,N(s)=k)P(N(t)<k+m,N(s)=k)P(Sk+m>t,Sks<Sk+1)P(Sk+m>t,Sks)P(Sk+m>t,Sk+1s)P(Sk+m>t,Sks)P(Sk+mSk>tSk,Sks)0sP(Sm>tu)pSk(u)du
    注意到前面我们证明了 N ( t ) ∼ P ( λ t ) < n ⇔ S n ∼ Γ ( n , λ ) > t N(t)\sim P(\lambda t)<n\Leftrightarrow S_n\sim \Gamma(n,\lambda )>t N(t)P(λt)<nSnΓ(n,λ)>t,因此可以对上述式子中的概率进行替换,即 P ( S m > t − u ) = P ( X < m ) P(S_m>t-u)=P(X<m) P(Sm>tu)=P(X<m),这里 X ∼ P ( λ ( t − u ) ) X\sim P(\lambda (t-u)) XP(λ(tu)),所以
    P ( S k + m > t , S k ≤ s ) = P ( S k + m − S k > t − S k , S k ≤ s ) = ∫ 0 s P ( S m > t − u ) p S k ( u ) d u = ∫ 0 s P { P ( λ ( t − u ) < m ) } p s k ( u ) d u = ∫ 0 s ∑ l = 0 m − 1 λ l ( t − u ) l l ! e − λ ( t − u ) λ k ( k − 1 ) ! u k − 1 e − λ u d u = e − λ t ∑ l = 0 m − 1 λ k + l ( k − 1 ) ! l ! ∫ 0 s u k − 1 ( t − u ) l d u \begin{aligned} &P(S_{k+m}>t,S_k\le s)\\ =&P(S_{k+m}-S_k >t-S_k,S_k\le s)\\ =& \int_0^s P(S_m>t-u) p_{S_k}(u)du\\ =&\int_0^sP\{P(\lambda(t-u)<m)\}p_{s_k}(u)du\\ =&\int_0^s \sum_{l=0}^{m-1}\frac{\lambda^l(t-u)^l}{l!}e^{-\lambda (t-u)}\frac{\lambda ^k}{(k-1)!}u^{k-1}e^{-\lambda u}du\\ =&e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda ^{k+l}}{(k-1)!l!}\int_0^s u^{k-1}(t-u)^l du \end{aligned} =====P(Sk+m>t,Sks)P(Sk+mSk>tSk,Sks)0sP(Sm>tu)pSk(u)du0sP{P(λ(tu)<m)}psk(u)du0sl=0m1l!λl(tu)leλ(tu)(k1)!λkuk1eλudueλtl=0m1(k1)!l!λk+l0suk1(tu)ldu
    类似地有
    P ( S k + m > t , S k + 1 ≤ s ) = ∫ 0 s P ( S m − 1 > t − u ) p S k + 1 ( u ) d u = ∫ 0 s P { P ( λ ( t − u ) ) < m − 1 } p S k + 1 ( u ) d u = ∫ 0 s ∑ l = 0 m − 2 λ l ( t − u ) l l ! e − λ ( t − u ) λ k + 1 k ! u k e − λ u d u = e − λ t ∑ l = 0 m − 2 λ k + 1 + l k ! ⋅ l ! ∫ 0 s u k ( t − u ) l d u \begin{aligned} &P(S_{k+m}>t,S_{k+1}\le s)\\ =& \int_0^s P(S_{m-1}>t-u)p_{S_{k+1}}(u)du\\ =& \int_0^s P\{P(\lambda (t-u))<m-1\}p_{S_{k+1}}(u)du\\ =&\int_0^s \sum_{l=0}^{m-2} \frac{\lambda^l (t-u)^l}{l!}e^{-\lambda(t-u)}\frac{\lambda ^{k+1}}{k!}u^ke^{-\lambda u}du\\ =&e^{-\lambda t}\sum_{l=0}^{m-2}\frac{\lambda ^{k+1+l}}{k!\cdot l!}\int_0^s u^k (t-u)^ldu \end{aligned} ====P(Sk+m>t,Sk+1s)0sP(Sm1>tu)pSk+1(u)du0sP{P(λ(tu))<m1}pSk+1(u)du0sl=0m2l!λl(tu)leλ(tu)k!λk+1ukeλudueλtl=0m2k!l!λk+1+l0suk(tu)ldu

    P ( S k + m > t , S k ≤ s ) = e − λ t ∑ l = 0 m − 1 λ k + l ( k − 1 ) ! l ! ∫ 0 s u k − 1 ( t − u ) l d u = e − λ t ∑ l = 0 m − 1 λ k + l k ! l ! ∫ 0 s k u k − 1 ( t − u ) l d u = e − λ t ∑ l = 0 m − 1 λ k + l k ! l ! ( s k ( t − s ) l + l ∫ 0 s u k ( t − u ) l − 1 d u ) = e − λ t ∑ l = 0 m − 1 λ k + l k ! l ! s k ( t − s ) l + e − λ t ∑ l = 1 m − 1 λ k + l k ! ( l − 1 ) ! ∫ 0 s u k ( t − u ) l − 1 d u = e − λ t ∑ l = 0 m − 1 λ k + l k ! l ! s k ( t − s ) l + e − λ t ∑ l = 0 m − 2 λ k + l + 1 k ! ⋅ l ! ∫ 0 s u k ( t − u ) l d u = e − λ t ∑ l = 0 m − 1 λ k + l k ! l ! s k ( t − s ) l + P ( S k + m > t , S k + 1 ≤ s ) \begin{aligned} &P(S_{k+m}>t,S_k\le s)\\ =&e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda ^{k+l}}{(k-1)!l!}\int_0^s u^{k-1}(t-u)^l du \\ =&e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda ^{k+l}}{k!l!}\int_0^s ku^{k-1 }(t-u)^ldu\\ =&e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda ^{k+l}}{k!l!}\left(s^{k}(t-s)^l+l\int_0^s u^k (t-u)^{l-1}du\right)\\ =&e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda ^{k+l}}{k!l!}s^{k}(t-s)^l \\&+e^{-\lambda t}\sum_{l=1}^{m-1}\frac{\lambda ^{k+l}}{k!(l-1)!}\int_0^su^k(t-u)^{l-1}du\\ =&e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda ^{k+l}}{k!l!}s^{k}(t-s)^l+e^{-\lambda t}\sum_{l=0}^{m-2}\frac{\lambda ^{k+l+1}}{k!\cdot l!}\int_0^s u^k(t-u)^ldu\\ =&e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda^{k+l}}{k!l!}s^{k}(t-s)^l+P(S_{k+m}>t,S_{k+1}\le s) \end{aligned} ======P(Sk+m>t,Sks)eλtl=0m1(k1)!l!λk+l0suk1(tu)ldueλtl=0m1k!l!λk+l0skuk1(tu)ldueλtl=0m1k!l!λk+l(sk(ts)l+l0suk(tu)l1du)eλtl=0m1k!l!λk+lsk(ts)l+eλtl=1m1k!(l1)!λk+l0suk(tu)l1dueλtl=0m1k!l!λk+lsk(ts)l+eλtl=0m2k!l!λk+l+10suk(tu)ldueλtl=0m1k!l!λk+lsk(ts)l+P(Sk+m>t,Sk+1s)
    因此有
    P ( N ( t ) − N ( s ) < m , N ( s ) = k ) = P ( S k + m > t , S k ≤ s ) − P ( S k + m > t , S k + 1 ≤ s ) = e − λ t ∑ l = 0 m − 1 λ k + l k ! l ! s k ( t − s ) l = ( λ k s k k ! e − λ s ) ( ∑ l = 0 m − 1 λ l ( t − s ) l l ! e − λ ( t − s ) ) = P ( N ( s ) = k ) ⋅ P ( N ( t − s ) < m ) \begin{aligned} &P(N(t)-N(s)<m, N(s)=k)\\ =& P(S_{k+m}>t,S_k \le s)-P(S_{k+m}>t,S_{k+1}\le s)\\ =& e^{-\lambda t}\sum_{l=0}^{m-1}\frac{\lambda ^{k+l}}{k!l!}s^{k}(t-s)^l\\ =&\left(\frac{\lambda ^ks^k}{k!}e^{-\lambda s}\right) \left(\sum_{l=0}^{m-1} \frac{\lambda ^{l}(t-s)^{l}}{l!}e^{-\lambda (t-s)}\right)\\ =&P(N(s)=k)\cdot P(N(t-s)<m) \end{aligned} ====P(N(t)N(s)<m,N(s)=k)P(Sk+m>t,Sks)P(Sk+m>t,Sk+1s)eλtl=0m1k!l!λk+lsk(ts)l(k!λkskeλs)(l=0m1l!λl(ts)leλ(ts))P(N(s)=k)P(N(ts)<m)

  • 10
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值