称球问题解析(3) - 公式证明

这篇博客探讨了如何在一组外观相同的小球中,利用没有砝码的天秤找出唯一一个较轻或较重的球。作者通过数学证明,展示了称n次最多可以从M个球中找出异常球并确定其轻重,且给出了证明步骤。证明过程涉及集合论和递归关系,最终得出称量次数与球数的关系公式。文章引用了F.J.Dyson在1946年发表的The Problem of the Pennies作为理论来源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者: Phill King

邮箱: phillking1982@163.com

原创文章,转载请注明出处。

问题描述:

有N个外表一模一样的小球,除了有一个小球略轻或略重,其他的小球质量都是一样的。求用没砝码的天秤最少称多少次,才能找出的异常球,并且知道它是更轻还是更重?

证明:

假设称n次最多可以从M个球找到一个异常的球, 且获知其轻重。

求证M <= \frac{3^{n}-3}{2}

步骤一:

  1. 在第i次称球时, 设定C(i,0), C(i, 2), C(i,1)为放置在左边、右边和不称的球的集合。|C(i,0)| 代表集合C(i,0)中元素的数目(cardinality),则有:

                            |C(i,0)|+|C(i,1)|+|C(i,2)|=M

2. 设Di为第i次称后,可能为重的球的集合; Ei为可能为轻的球的集合。

3. 求证以下不等式成立: 

                         Di+Ei \leqslant 3^{n-i}

步骤二:求证Di+Ei \leqslant 3^{n-i}

 

步骤三:

 总结:n次最多可以从M个球找到一个异常的球

     证明公式: M <= \frac{3^{n}-3}{2} 成立

证明方法来源于: The Problem of the Pennies, F. J. Dyson, The Mathematical Gazette , Vol. 30, No. 291 (Oct., 1946), pp. 231-234

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值