UVA 10534

  这题的题意很简单,求满足题目所给性质的子序列的最长长度,一开始竟然晕晕乎乎的用了枚举中间元素+LIS的方法求解,好吧,必然超时,然后用了常规的方法,从左到右求一次递减,从右到左再求一次,最后比较求解,提交后发现还是超时,此时已然意识到求LIS问题应该有更快的方法,于是乎上网一搜,果然有,下面是转载闷瓜蛋子的专栏博客中转载的介绍LIS问题的nlogn方法,原作者因为没有标明所以不知道最初的出处。

最长不下降子序列的O(nlogn)算法分析如下:

设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2,  ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。

            现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < t
            (2)A[x] < A[y] < A[t]
            (3)F[x] = F[y]

此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?

很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ...  A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
            再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] =  k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。

            注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不下降的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。

            利  用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A  [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A  [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <=  D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = A[t]。最后,len即为所要求的最长上 升子序列的长度。

            在  上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的  时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法 的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

 

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
int s[10010],dpin[10010],dpde[10010];
int stack[10010];
int bs(int l,int h,int key)
{
	while(l<h){
		int mid=(l+h)>>1;
		if(stack[mid]<key) l=mid+1;
		else h=mid;
	}
	return l;
}
int main()
{
	int n;
	while(cin>>n){
		int len=0;
		for(int i=1;i<=n;i++) scanf("%d",s+i);
		dpin[0]=dpde[n+1]=0;
		stack[0]=-1;
		for(int i=1;i<=n;i++){
			stack[len+1]=0;
			int pos=bs(0,len+1,s[i]);// 二分查找确定插入位置
			stack[pos]=s[i];// 更新栈中元素
			dpin[i]=pos;// 确定以第i个元素结尾的LIS的长度
			len=max(len,pos);// 更新栈的大小
		}
		len=0;
		for(int i=n;i>=1;i--){
			stack[len+1]=0;
			int pos=bs(0,len+1,s[i]);
			stack[pos]=s[i];
			dpde[i]=pos;
			len=max(len,pos);
		}
		int ans=1;
		for(int i=1;i<=n;i++){
			int t=(min(dpin[i]-1,dpde[i]-1)<<1)+1;
			ans=max(ans,t);
		}
		cout<<ans<<endl;
	}
	return 0;
}


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值