我想组装一台新电脑,所以最近一段时间没少上各大电脑网站,了解各种配件的价格、性能,阅读各种各样的评测文章。有几次,我去太平洋电脑城转,发现卖电脑的竟然还不如我对各种配件了解--当然,指的是水平一般的人。
不过,在关注电脑行情时,我越来越明显地感觉到,选择一款合适的配件是简单的--只要它的价格合适、性能符合要求、质量可靠,做出最终的决定却是困难的,因为有太多的选择、太多的评测文章、太多的不同意见、太多的市场活动。有时候,看了许多文章,觉得某个配件合适,在看了一些“编辑评价”后,就又立即选择放弃;有时候,从来不关注的配件,因为一个广告,而一举变成“可以考虑”,甚至是“优先考虑”。这些问题产生的根本原因在于,在选择的过程中,感性成分太大。那么,有没有可能采用一种完全理性的方法来选择呢?我认为有,这就是人工智能系统(一个有力的证据是人工智能可以有效地分析世界杯球队的优劣)。
我们先回顾一下什么的配件是最合适的配件。简单地说,就是价格合理、性能好、质量好。
首先说价格,什么样的价格是“合理”呢?如果买家只追求性能,价格基本忽略不计,那么“合理”的价格范围就非常大,价格在配件所占的比重就比较低。反之,如果买家的预算有限,那么,价格的变化就小,价格所占的比重就高。
其次是性能,它一般包括两个方面:物理参数、运行时评测分数。每个配件的物理参数是固定,但是每个物理参数对整体性能的影响却是不同的。如果每个参数所占的比重能够确定,则物理参数的评价就非常容易了。运行时评测分数相对来说,比较直观,容易判断。
最后是质量。如何评价一个配件的质量好坏呢?一般来说,一线厂商的产品更可靠些,用户投诉的少、赞扬的多的产品更好些。
现在,我们已经知道了比较配件的基本原则,那么,如何应用这些原则做出有效地统计呢?
1,价格。价格是容易获得的。在国外的网站,已经可以同时列出许多网站的报价。国内的网站还不行,没有“交流”的接口。
假设我们能够知道配件的价格,以及它的生产时间、价格变化趋势。
首先确定产品的生命期:成长期,成熟期,还是淘汰期。处于成长期的配件,价格往往稍高,价格波动也较大;而处于成熟期的配件,因为竞争最剧烈,价格往往已经是最低,性价比最高;而淘汰期的配件,因为利润不高、市场份额不大,虽然价格相对来说较低,但最佳性价比并不突出。
其次,买家要确定对价格的敏感程度。敏感程度可以用价格范围来表示,也可以用百分比来表示。
最后,将上述两个因素,结合产品当前的价格,就可以得出一个价格合理度。当然,各种因素的所占比重,是需要一个训练过程才能够确定的。而且,并不存在一个绝对理想的数值。概括地说,对于价格比较敏感的买家来说,处于成熟期的产品的价格合理度较高。
2,物理参数是容易比较的。每种配件的物理参数是固定的,每种类型的配件,它的各个参数所占的比重也比较固定。
如果能够让几个资深的DIY高手对各种参数做出评价,然后再做一个综合,就可以方便地确定这些比重。或者,找出以前市场中曾经出现过的同一类型的配件,分析、比较这些配件的参数,也可以得出比重参数。有了这些参数,就可以容易地计算出物理参数的优劣度了。
这个过程不需要买家来参与,因为物理参数是客观的。在选购配件的时候,买家往往把这些客观参数感性化,厂商也往往倾向于把这些参数感性化,以引导买家朝着最有利于自己的方向发展。
3,性能评测得分也是容易比较的,因为它也是客观。不过,评测得分并不总是完全一致,因为测试方式会产生差异。要获取较为客观的评测得分,可以选择一个较大的网站,或者综合几个网站的评测得分。
只要有一个可信的评测得分,优劣度也就容易得出了。
在许多评测文章中,编辑出于不同的目的需要,往往采用最有利于自己结论的的测试方式,而且在文章中,包含大量主观性的意见,让人看了之后,会不有自主地接受这些主观意见,以致选择的时候也以这些主观意见作为依据。
4,用户投诉、编辑评价与厂家品牌,也是购买配件的一个很重要的决定因素。可是,在所有的用户投诉和编辑评价当中,有几个是客观的、真诚的做出评价的,有几个是枪手?这个很难辨别,尤其是目前的中国。
再说,厂家的品牌到底有多重要?一般人也说不出来。
最常见的情况往往,本来对某个产品很感兴趣,结果看到几个“用户投诉”说,这个产品如何如何不好,结果一下子就再也不想要这个产品了。而那几个“用户”很有可能是一个人,花费了几分钟的时间写的。这种情况下,采用一个客观的评价标准获得的结果更具有说服力。
用户投诉可以用几个参数来衡量:用户关注的数量、用户投诉的数量、用户赞扬的数量(有些网站已经有这些统计了)。好的产品首先是买家关注相当多的。其次,用户投诉的少、赞扬的多。这些都是常识。有了这些数据,就可以确定该产品的用户评价。
编辑评测与用户评价不同,编辑对市场、配件更了解,不过,与厂商的关系比较密切,不容易客观公正。可以通过统计关注产品总的评测文章、某些大网站总的评测文章,来获得编辑关注度(注意,国内似乎很少有评测文章是指责产品的)。至于编辑意见、用户意见的比重,需要长期的观察才能得出结论。
厂商的品牌也是需要长期的观察、分析比较才有得出结论。
这些不太容易确定的参数,可以通过对大量已知数据做出分析而获得,也可以参考业内人士的意见,以及买家的意见。
综上所述,使用智能系统来做出评测是完全可能的,而且是有效的。不过,目前的条件并不成熟,因为获取评测所需要的各种参数是非常困难的。随着网络上信息量的增大,数据表示的标准化是不可避免的。到时,采集这些数据就是可行的了,利用智能系统帮我们在买东西时提供参考依据也就是可能的事了。
另外,不仅购买电脑配件可以利于人工智能系统,购买别的东西也可以利用,只不过,评测所需要的参数有所区别而已。
ANYWAY,最终做出决定的还是我们人类。电脑可以帮你选出最合适的东西,但是,只有你自己知道:我需要买嘛?
不过,在关注电脑行情时,我越来越明显地感觉到,选择一款合适的配件是简单的--只要它的价格合适、性能符合要求、质量可靠,做出最终的决定却是困难的,因为有太多的选择、太多的评测文章、太多的不同意见、太多的市场活动。有时候,看了许多文章,觉得某个配件合适,在看了一些“编辑评价”后,就又立即选择放弃;有时候,从来不关注的配件,因为一个广告,而一举变成“可以考虑”,甚至是“优先考虑”。这些问题产生的根本原因在于,在选择的过程中,感性成分太大。那么,有没有可能采用一种完全理性的方法来选择呢?我认为有,这就是人工智能系统(一个有力的证据是人工智能可以有效地分析世界杯球队的优劣)。
我们先回顾一下什么的配件是最合适的配件。简单地说,就是价格合理、性能好、质量好。
首先说价格,什么样的价格是“合理”呢?如果买家只追求性能,价格基本忽略不计,那么“合理”的价格范围就非常大,价格在配件所占的比重就比较低。反之,如果买家的预算有限,那么,价格的变化就小,价格所占的比重就高。
其次是性能,它一般包括两个方面:物理参数、运行时评测分数。每个配件的物理参数是固定,但是每个物理参数对整体性能的影响却是不同的。如果每个参数所占的比重能够确定,则物理参数的评价就非常容易了。运行时评测分数相对来说,比较直观,容易判断。
最后是质量。如何评价一个配件的质量好坏呢?一般来说,一线厂商的产品更可靠些,用户投诉的少、赞扬的多的产品更好些。
现在,我们已经知道了比较配件的基本原则,那么,如何应用这些原则做出有效地统计呢?
1,价格。价格是容易获得的。在国外的网站,已经可以同时列出许多网站的报价。国内的网站还不行,没有“交流”的接口。
假设我们能够知道配件的价格,以及它的生产时间、价格变化趋势。
首先确定产品的生命期:成长期,成熟期,还是淘汰期。处于成长期的配件,价格往往稍高,价格波动也较大;而处于成熟期的配件,因为竞争最剧烈,价格往往已经是最低,性价比最高;而淘汰期的配件,因为利润不高、市场份额不大,虽然价格相对来说较低,但最佳性价比并不突出。
其次,买家要确定对价格的敏感程度。敏感程度可以用价格范围来表示,也可以用百分比来表示。
最后,将上述两个因素,结合产品当前的价格,就可以得出一个价格合理度。当然,各种因素的所占比重,是需要一个训练过程才能够确定的。而且,并不存在一个绝对理想的数值。概括地说,对于价格比较敏感的买家来说,处于成熟期的产品的价格合理度较高。
2,物理参数是容易比较的。每种配件的物理参数是固定的,每种类型的配件,它的各个参数所占的比重也比较固定。
如果能够让几个资深的DIY高手对各种参数做出评价,然后再做一个综合,就可以方便地确定这些比重。或者,找出以前市场中曾经出现过的同一类型的配件,分析、比较这些配件的参数,也可以得出比重参数。有了这些参数,就可以容易地计算出物理参数的优劣度了。
这个过程不需要买家来参与,因为物理参数是客观的。在选购配件的时候,买家往往把这些客观参数感性化,厂商也往往倾向于把这些参数感性化,以引导买家朝着最有利于自己的方向发展。
3,性能评测得分也是容易比较的,因为它也是客观。不过,评测得分并不总是完全一致,因为测试方式会产生差异。要获取较为客观的评测得分,可以选择一个较大的网站,或者综合几个网站的评测得分。
只要有一个可信的评测得分,优劣度也就容易得出了。
在许多评测文章中,编辑出于不同的目的需要,往往采用最有利于自己结论的的测试方式,而且在文章中,包含大量主观性的意见,让人看了之后,会不有自主地接受这些主观意见,以致选择的时候也以这些主观意见作为依据。
4,用户投诉、编辑评价与厂家品牌,也是购买配件的一个很重要的决定因素。可是,在所有的用户投诉和编辑评价当中,有几个是客观的、真诚的做出评价的,有几个是枪手?这个很难辨别,尤其是目前的中国。
再说,厂家的品牌到底有多重要?一般人也说不出来。
最常见的情况往往,本来对某个产品很感兴趣,结果看到几个“用户投诉”说,这个产品如何如何不好,结果一下子就再也不想要这个产品了。而那几个“用户”很有可能是一个人,花费了几分钟的时间写的。这种情况下,采用一个客观的评价标准获得的结果更具有说服力。
用户投诉可以用几个参数来衡量:用户关注的数量、用户投诉的数量、用户赞扬的数量(有些网站已经有这些统计了)。好的产品首先是买家关注相当多的。其次,用户投诉的少、赞扬的多。这些都是常识。有了这些数据,就可以确定该产品的用户评价。
编辑评测与用户评价不同,编辑对市场、配件更了解,不过,与厂商的关系比较密切,不容易客观公正。可以通过统计关注产品总的评测文章、某些大网站总的评测文章,来获得编辑关注度(注意,国内似乎很少有评测文章是指责产品的)。至于编辑意见、用户意见的比重,需要长期的观察才能得出结论。
厂商的品牌也是需要长期的观察、分析比较才有得出结论。
这些不太容易确定的参数,可以通过对大量已知数据做出分析而获得,也可以参考业内人士的意见,以及买家的意见。
综上所述,使用智能系统来做出评测是完全可能的,而且是有效的。不过,目前的条件并不成熟,因为获取评测所需要的各种参数是非常困难的。随着网络上信息量的增大,数据表示的标准化是不可避免的。到时,采集这些数据就是可行的了,利用智能系统帮我们在买东西时提供参考依据也就是可能的事了。
另外,不仅购买电脑配件可以利于人工智能系统,购买别的东西也可以利用,只不过,评测所需要的参数有所区别而已。
ANYWAY,最终做出决定的还是我们人类。电脑可以帮你选出最合适的东西,但是,只有你自己知道:我需要买嘛?