上一篇:人工智能AI的开山鼻祖

本篇序言:记得个人电脑刚进入中国市场时,由于价格昂贵,很多人选择去电脑城DIY自己的电脑。其实,人工智能模型也是如此,您也可以DIY一个属于自己的模型。本篇将带大家完成模型的搭建,教大家如何构建神经网络并进行训练。别忘了关注作者,关注后您会变得更聪明,不关注就只能靠颜值了 ^_^。
开始使用机器学习
正如我们在本章前面所看到的,机器学习的范式是,你有数据,这些数据是有标签的,你想要找出匹配数据和标签的规则。展示这个过程的最简单的代码场景如下。
考虑这两组数字:
X = [-1, 0, 1, 2, 3, 4]
Y = [-3, -1, 1, 3, 5, 7]
这些X和Y值之间存在某种关系(例如,如果X=-1,Y=-3;如果X=3,Y=5,等等)。你能看出它们之间的规律吗?
经过几秒钟,你可能会发现这里的模式是Y = 2X - 1。你是如何得到这个结论的?不同的人有不同的推理方式,但通常的观察是,X值每次增加1,而Y值每次增加2;因此,Y = 2X +/- 某个值。然后他们会看到当X=0时,Y=-1,所以他们推测答案可能是Y=2X - 1。接着,他们查看其他值,发现这个假设是正确的,答案是Y = 2X - 1。
这与机器学习过程非常相似。让我们看看你可以编写的TensorFlow代码,让一个神经网络为你找到这个规律。
以下是完整的代码,使用了TensorFlow的Keras API。别担心,如果它现在还不太明白;我们会逐行解析:
import tensorflow as tf
import numpy as np
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
model = Sequential([Dense(units=1, input_shape=[1])])
model.compile