学习资料集合

初心、积累、迭代、do better、高效、清晰、聚焦

信息:
Git Trend:https://github.com/trending?spoken_language_code=zh
SOTA:https://paperswithcode.com/sota
MIT:https://news.mit.edu/
量子位:https://www.qbitai.com/
机器之心:https://www.jiqizhixin.com/
新智元:https://www.zhihu.com/org/xin-zhi-yuan-88-3
经济日报:http://paper.ce.cn/pc/layout/202404/09/node_01.html

Prompt:
https://zhuanlan.zhihu.com/p/625906860 ✅

数据:
高质量数据:https://lilianweng.github.io/posts/2024-02-05-human-data-quality/ ⭕️
Scaling Law:https://zhuanlan.zhihu.com/p/690101989

开发工具:

模型:
Transformer:
位置编码:https://zhuanlan.zhihu.com/p/454482273
自注意力:https://zhuanlan.zhihu.com/p/455399791
LN:https://zhuanlan.zhihu.com/p/456863215
ResNet:https://zhuanlan.zhihu.com/p/459065530
Subword Tokenization:https://zhuanlan.zhihu.com/p/460678461
长文概述:https://zhuanlan.zhihu.com/p/630356292

    ViT:
        https://zhuanlan.zhihu.com/p/657666107 ✅

ViT微调时如何进行位置编码的插值:https://blog.csdn.net/qq_44166630/article/details/127429697
Clip:
https://zhuanlan.zhihu.com/p/660476765

    ChatGPT:
    https://zhuanlan.zhihu.com/p/609367098
    https://zhuanlan.zhihu.com/p/605516116

    MoE:https://zhuanlan.zhihu.com/p/681154742 ✅

https://www.tensorops.ai/post/what-is-mixture-of-experts-llm
https://zhuanlan.zhihu.com/p/674698482
https://www.zhihu.com/tardis/zm/art/673048264?source_id=1003
https://zhuanlan.zhihu.com/p/672025580

    llava

    llama

qwen:

推理加速:
Flash Attention v1:https://zhuanlan.zhihu.com/p/669926191
Flash Attention v2:https://zhuanlan.zhihu.com/p/665170554
计算加速:https://zhuanlan.zhihu.com/p/666452391
模型压缩:https://zhuanlan.zhihu.com/p/667455383
Mixtral 8*7B 推理优化:https://mp.weixin.qq.com/s/jjZQ4A-rvk_e-woKLlNTVQ
MQA:https://zhuanlan.zhihu.com/p/634236135
加速部署:
Triton中部署vLLM:https://github.com/triton-inference-server/tutorials/tree/main/Quick_Deploy/vLLM
加速:https://zhuanlan.zhihu.com/p/683986024
量化:https://robot9.me/ai-model-quantization-principles-practice/

训练:
张量并行:https://zhuanlan.zhihu.com/p/654897296
Deepspeed:https://zhuanlan.zhihu.com/p/629644249
Zero显存优化:https://zhuanlan.zhihu.com/p/513571706

微调:
LoRA:
原理:https://zhuanlan.zhihu.com/p/646831196 ✅
源码:https://zhuanlan.zhihu.com/p/654897296
AdaLoRA:https://zhuanlan.zhihu.com/p/657130029 ✅
SFT:https://zhuanlan.zhihu.com/p/682604566

微调框架:
llama factory:https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md

RLHF:
RM:https://zhuanlan.zhihu.com/p/595579042 ✅
DPO:
https://zhuanlan.zhihu.com/p/642569664
https://huggingface.co/blog/pref-tuning
PPO:https://zhuanlan.zhihu.com/p/111049450
PPO:https://www.cnblogs.com/xingzheai/p/15931681.html
PPO原理和源码:https://zhuanlan.zhihu.com/p/677607581
PPO训练:https://zhuanlan.zhihu.com/p/666455333
LLama2细节:https://zhuanlan.zhihu.com/p/660058778

LangChain:
源码:https://zhuanlan.zhihu.com/p/659219334 、 https://www.bilibili.com/video/BV1fF41197XT/?p=1
Agent源码:https://qiankunli.github.io/2023/10/30/llm_agent.html

Agent:
langchain Agent:https://zhuanlan.zhihu.com/p/678665924
Agent-FLAN:https://mp.weixin.qq.com/s/oZKElOdMaGCNuXb3nSGpag ⭐️⭐️
一文带你了解基于大模型的Agent:https://mp.weixin.qq.com/s/tkdNkUIdmWoy_Ib37wiebQ
Agent可以更有趣、更有用:https://zhuanlan.zhihu.com/p/689816790 ⭐️
chat向左、agent向右:https://01.me/2023/10/ai-agents/
agent经典论文:https://zhuanlan.zhihu.com/p/673788545
agent整体介绍:https://lilianweng.github.io/posts/2023-06-23-agent/
agent综述:https://zhuanlan.zhihu.com/p/656676717
agent模式:
https://blog.csdn.net/letsgogo7/article/details/138392568?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-0-138392568-blog-134910104.235v43pc_blog_bottom_relevance_base3&spm=1001.2101.3001.4242.1&utm_relevant_index=3
langchain agent模式:https://blog.langchain.dev/reflection-agents/
react和reflextion更多的解释:https://www.promptingguide.ai/zh/techniques/reflexion

Agent 框架:
Lagent:https://github.com/InternLM/lagent/blob/main/README_zh-CN.md
Langchain:https://python.langchain.com/docs/get_started/quickstart/#next-steps
AgentGPT:https://github.com/reworkd/AgentGPT
modelscope-agent:https://github.com/modelscope/modelscope-agent/blob/master/README_CN.md

Agent设计模式
九种:https://mp.weixin.qq.com/s/8J5uwJ9XwGaMavmxQzHaGw

code:
pytorch:https://www.zhihu.com/question/352525266/answer/3395318281
linux:https://wangchujiang.com/linux-command/#!kw=top

应用:
MoneyPrinterTurbo
https://github.com/TMElyralab/MuseV

课程:
英伟达:https://www.qbitai.com/2024/04/133021.html

博主:
https://mp.weixin.qq.com/s/yaJMSA2nBzNHzFDpp05jjw

牛人:
李博杰:https://01.me/

Sora:
介绍:https://weibo.com/ttarticle/p/show?id=2309405003442207719529

国内:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值