文献阅读2016-A deep feature based framework for breast masses classification

文献阅读2016-A deep feature based framework for breast masses classification

这篇论文写的比较早了,设计了一个基于深度特征的乳腺肿块分类框架。它主要包括一个卷积神经网络(CNN)和一个决策机制。这个CNN结构很简单,5个卷积层和3个FC层。在这里插入图片描述
在这里插入图片描述

所选择的用于训练分类器的特征从网络的两层中提取。分类器将输入图像分成两类。具体来说,它们来自于Conv5和Fc7层,这两层都是列向量形式,然后在训练数据集上训练两个基于层次特征的线性SVM分类器,并在测试数据集上进行测试,以预测测试图像的良恶性。

决策机制为:
在这里插入图片描述
如果两个分类器预测的结果一致,放入Result1;如果不一致,将产生不一致结果的测试图像连接到一个称为不确定集的数据集中,以确定每个实例在测试集中属于哪种类型。使用原始的灰色信息来计算这些实例与训练集中良恶性实例的接近度。在接近度计算的过程中,将训练数据集中的benign和malignant图像分别聚类为几个子类,得到两类的聚类中心和每个子类的个数,用于下一步的相似度度量。聚类方法选择Kmeans方法。
1 可视化:为了更直观地展示特征提取的性能,我们选择了t分布随机邻居嵌入(t-SNE)作为主观评价方法之一。tSNE方法通过在二维地图中给每个数据点或实例一个位置来可视化高维深度特征和原始图像。在这里插入图片描述

2 为了显示不同层的特征集中在哪里,我们采用了一种基于反褶积的方法来分层可视化图像。如下图,结果表明:高水平特征映射更注重海量图像的整体感觉,而中水平特征映射和原始图像映射更注重图像的局部和细节。
在这里插入图片描述
层次特征可视化的一些恶性实例。每一列代表一个实例,从上到下分别是原始图像、中层特征和高层特征
3 比较了单独两个特征下的分类效果和加入决策机制的分类效果,如下图:
在这里插入图片描述
4 为了证明我们提出的算法在只能获得少量乳腺肿块图像数据库的情况下的稳定性,我们在不同规模的数据集上执行我们的方案,并将其结果与先进的算法(BoW)进行比较。如下图,红色曲线中的点代表我们的方法对不同尺度(100,200,…600)数据集的分类精度。蓝色曲线是基于bow的方案的性能,这是质量分类中最先进的方案。另外两条曲线也是基于方向梯度直方图(HOG)和基于尺度不变特征变换(SIFT)的典型算法。
在这里插入图片描述
证明了我们的方法在医学领域没有大数据集的情况下是有效的,这是本专题提出的主要挑战之一。

5 此外,为了达到本文所描述的最新结果,我们进行了各种实验,以获得最适合这项任务的网络结构。我们将我们的网络结构与Alex net中最广泛使用的变体在模型大小、参数数量、时间消耗和分类精度等方面进行了比较。这两种模型在各种任务中都被证明是有效的。从下表的内容可以看出,我们的网络以更少的存储空间获得了较强的竞争力。虽然我们的分类精度比VGG的分类精度稍差,但是在时间消耗、存储空间和参数数量上都要好得多。
在这里插入图片描述
总结:此论文我们提出了一种新的乳腺肿块分类框架。在前期工作的帮助下,我们首先从DDSM中获取海量图像,形成数据集。数据集中的实例被白化以进行预处理。基于该数据集,我们对训练好的CNN深度模型进行微调操作,获得了特征提取网络。从该网络的不同层次中提取中层特征和高层特征,训练两个线性SVM分类器。由于深度特征的有效性,最简单的线性分类器也能有效地区分实例。结合这两个分类器的结果,得到结果t1和不确定集。同时,通过计算加权相似度来确定不确定集的标签。模拟人脑的层次结构及其数据处理机制,从中提取的深度CNN模型及其特征对模拟大量图像在医生大脑中留下的多尺度印象有很大帮助。根据两种可视化策略的结果,直观地验证了深度特征在海量图像分类任务中的有效性。此外,实验结果表明,即使在特定数据库的规模不是很大的情况下,对某些数据进行调整的CNN模型也是有效的。
补充:迁移学习, LSVRC 中数据集是一个三通道的,与灰度医学图像不一致,增加了训练和测试阶段的计算消耗。用简单的投影方法将其转化为灰度图像。
培训策略以Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. (2012)为主培训策略,这是一个形成层次特征检测器的有监督的学习过程,使用LSVRC数据的训练阶段的学习率初始化为0.01,当验证错误率在当前学习率下停止提高时,再除以10。整个训练过程通过自然图像数据集持续100个周期。然后初始化训练阶段对乳腺肿块图像的学习率为0.00001,它作为第一阶段训练的策略。第二阶段完成了100个循环。同时,网络结构的主要和细节如表1和表2所示。然后,我们采用微调操作,将已经学习的模型在LSVRC上训练,调整架构,并根据已经学习的模型权值对我们的海量图像数据集进行重新训练。具体来说,本文的乳腺数据集是由600幅乳腺图像组成的(DDSM中提取227X227的),根据在医学图像上的成功应用,并遵循我们咨询的放射科医生的诊断习惯,我们应用的实例分别旋转90度、180度、270度,将数据集放大3倍。将LSVRC训练得到的网络参数设置为针对海量图像的具体CNN的初始值,并根据海量数据集对网络进行优化。该网络中各卷积结构的主要参数如表2所示。
采用随机梯度下降(SGD)算法对网络进行优化,该算法在训练过程中非常简单有效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值