文献阅读2019-Machine Learning‐Assisted System for Thyroid Nodule Diagnosis
方法:在9种常用算法的基础上,随机抽取60%的样本建立模型,并使用剩余40%的案例进行验证。所有的模型都有一个验证数据集,该数据集在测试前的恶性概率为10%。这些模型通过包含1000次衍生化和验证的机器学习进行了改进,并与经验丰富的放射科医生的诊断进行了比较。计算敏感性、特异性、准确度和曲线下面积(AUC)。
结果:随机森林算法产生了最佳诊断模型,该模型优于仅基于传统美国的放射学家诊断[AUC 0.924(95%置信区间[CI] 0.895‐0.953)vs. 0.834 (95%CI: 0.815‐0.853)],也优于基于传统美国和RTE的放射学家诊断[AUC: 0.938 (95%CI: 0.914‐0.961)vs. 0.843 (95%CI: 0.829‐0.857)]。
具体介绍:
机器学习训练:
对于每个结节,常规US中收集了11个特征,RTE中收集了1个特征。数据集1包含了11种特征,数据集2包含了11种特征加上1个RTE特征。这两个数据集被输入9种机器学习算法:l2‐logistic回归、线性判别分析、随机森林、核–支持向量机、自适应增强、k‐NN、神经网络、朴素贝叶斯和卷积神经网络。使用每一种算法,在以训练测试集3