文献阅读2019-Machine Learning‐Assisted System for Thyroid Nodule Diagnosis

该研究对比了9种机器学习算法在甲状腺结节诊断中的应用,结果显示随机森林算法表现最佳,其AUC优于放射科医生的诊断。通过收集常规超声和实时弹性成像特征,对模型进行训练和验证,最终确定随机森林为最优模型。
摘要由CSDN通过智能技术生成

文献阅读2019-Machine Learning‐Assisted System for Thyroid Nodule Diagnosis

方法:在9种常用算法的基础上,随机抽取60%的样本建立模型,并使用剩余40%的案例进行验证。所有的模型都有一个验证数据集,该数据集在测试前的恶性概率为10%。这些模型通过包含1000次衍生化和验证的机器学习进行了改进,并与经验丰富的放射科医生的诊断进行了比较。计算敏感性、特异性、准确度和曲线下面积(AUC)。

结果:随机森林算法产生了最佳诊断模型,该模型优于仅基于传统美国的放射学家诊断[AUC 0.924(95%置信区间[CI] 0.895‐0.953)vs. 0.834 (95%CI: 0.815‐0.853)],也优于基于传统美国和RTE的放射学家诊断[AUC: 0.938 (95%CI: 0.914‐0.961)vs. 0.843 (95%CI: 0.829‐0.857)]。
具体介绍:在这里插入图片描述

机器学习训练

对于每个结节,常规US中收集了11个特征,RTE中收集了1个特征。数据集1包含了11种特征,数据集2包含了11种特征加上1个RTE特征。这两个数据集被输入9种机器学习算法:l2‐logistic回归、线性判别分析、随机森林、核–支持向量机、自适应增强、k‐NN、神经网络、朴素贝叶斯和卷积神经网络。使用每一种算法,在以训练测试集3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值