[论文笔记]Machine Learning for Vehicular Networks:Recent Advances and Application Examples

前言

感谢李师兄推荐Le Liang这位作者,通过查找可以看到他所著的许多将机器学习和通信结合起来的文章,从这篇博文开始的几篇博文内容将更偏向通信与机器学习的交叉,论文的阅读顺序根据引用次数 年份 标题暂时安排如下:2018_用于车联网的机器学习方法:进展和用例;2019_面向智能车联网:一个机器学习框架;2018_基于图论的车联网通信资源分享方法。

此外以后博客的内容大致按照:”需求--技术--别人的方法有什么缺陷--采用什么方法解决--这个方法在其他使用场景中和我的期望使用场景有什么区别/有什么没考虑到“的顺序进行。力求精简并突出文章所提出的新方法带来的贡献。

[看完介绍词后]感觉这是一篇综述性文章

[完成目录整理后]感觉可能会有很多关于机器学习的基础性知识,基础的要注意跳过,重点关注可以解决什么通信方面的问题以及如何解决。


机器学习应用于无线网络时,主要是提供一种数据驱动的方法来解决传统通信的难题。本文的主要回顾了车联网中应用机器学习的最新进展。

背景和动机

随着车辆对环境感知能力的不断增强,其已经朝着完全自治的方向发展,因此改善它们之间的连接性是很必要的,由此导致了互联车辆概念的提出。互联车辆构成的车辆网络也是ITS和智慧城市发展的重要组成部分。它可以帮助提高道路安全性、优化交通效率、实现自动驾驶和车辆的泛在网络访问。对我们日常生活产生深远影响。

但因为严苛而多样的QoS(服务质量要求)和车载环境中固有的动态特性(如速度很快),将传统无线通信系统用于车载网络存在很大挑战。如:时变性很强的无线信道和网络拓扑等。为应对挑战有两条路:IEEE 802.11和C-V2X。

同时,借助高性能计算和存储以及先进的传感器,车辆可以生成、收集、存储、处理大量数据,这些数据可以给我们提供了新的改进机会。但是传统的通信策略对这些信息的利用是很缺乏的。

机器学习可以找到一些人难以发现的模式特征和底层结构,它利用数据驱动但不对数据的分布进行明确假设,因此处理异构数据时鲁棒性更佳。机器学习可提供一套用于挖掘车辆网络中多个数据源的通用的工具,这将有助于形成更合理的决策并解决一些通信难题,但如何在车载网络中利用这些工具还是个挑战,并代表了一个有前途的研究方向。

机器学习方法

机器学习方法可粗略地分为有监督、无监督和强化学习三种,表1展示了三种方法的在无线网络的应用。

监督学习、无监督学习、强化学习在无线网络的应用概况

监督学习

需要输入有label的数据集,用于执行分类和回归任务。

分类需要每个输入样本都带label。无线网络中的分类可应用于 检测网络是否被入侵系统某些部分是否故障。分类的经典算法有贝叶斯分类器,K最近邻算法,决策树,SVM和神经网络等。

回归算法的输出经常是离散的,这点和分类算法不同。其可以应用于:预测信道参数网络吞吐量等,经典算法有逻辑回归、支持向量回归和高斯回归等。

无监督学习

实践中,数据大多都是无label的,此时应使用无监督学习的算法,此类算法旨在找到数据样本的更有效地表示形式,其可能通过隐式的结构或变量进行解释,经常使用贝叶斯学习法对其进行表示和学习。

聚类是无监督学习的代表问题,他根据样本的相似性将其分类。其输入特征可以是样本的绝对特征也可以是相对特征。在无线传感器网络中,分层协议的路由算法需要将附近节点聚类。经典的聚类算法有K均值、层次聚类、频谱聚类和Dirichlet过程。

无监督学习的另一个重要类别是

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值