论文笔记:(续)AOMPR的代数基础

文章详细阐述了代数结构如环和模的概念,以及同态在模块之间的性质。讨论了域的特征,线性哈希函数的定义和特性,特别是它们如何不是单同态。重点介绍了AOMDL(代数可证伪的离散对数假设)和AOMPR(代数一更多预映射抵抗力),这两个概念与线性哈希函数的抗碰撞性质相关联。
摘要由CSDN通过智能技术生成

为了清晰起见,将上篇博客中引用的一些代数问题整理如下

Basic Algebra

Modules

对于任何具有乘法单位1的环 R R R和任何阿贝尔群 ( M , + ) (M,+) (M,+),我们说 M M M是一个 R − m o d u l e R-module Rmodule如果存在一个运算 ⋅ : R × M → M \cdot:R\times M\rightarrow M :R×MM使得对于任何 a , b ∈ R a,b\in R a,bR和任何 x , y ∈ M x,y\in M x,yM,有:(1) a ⋅ ( x + y ) = a ⋅ x + a ⋅ y a\cdot(x+y)=a\cdot x+a\cdot y a(x+y)=ax+ay(2) ( a + b ) ⋅ x = a ⋅ x + b ⋅ x (a+b)\cdot x=a\cdot x+b\cdot x (a+b)x=ax+bx (3) ( a b ) ⋅ x = a ⋅ ( b ⋅ x ) (ab)\cdot x=a\cdot (b\cdot x) (ab)x=a(bx) (4) 1 ⋅ x = x 1\cdot x=x 1x=x;另外用 0 0 0表示 M M M的单位元。

Module Homomorphisms

对于任何 R − m o d u l e s   M R-modules~M Rmodules M N N N,一个映射 f : M → N f:M\rightarrow N f:MN R − m o d u l e s R-modules Rmodules的同态,如果对于任何 r ∈ R r\in R rR x , y ∈ M x,y\in M x,yM f ( x + r ⋅ y ) = f ( x ) + r ⋅ f ( y ) f(x+r\cdot y)=f(x)+r\cdot f(y) f(x+ry)=f(x)+rf(y)

我们说同态 f f f是一个epimorphism(满同态),如果 f f f是一个surjection(满射);我们说同态 f f f是一个monomorphism (单同态),如果 f f f是一个injection(单射)。
(满射+同态=满同态;单射+同态=单同态;双射+同态=同构)
在这里插入图片描述

Characteristic of a Field

对于任何field F \mathbb{F} F,其特征,用 c h a r ( F ) char(\mathbb{F}) char(F)表示,是最小的正数 k k k使得在这里插入图片描述,其中 1 \bm{1} 1表示 F \mathbb{F} F的乘法单位元,用 0 0 0表示 F \mathbb{F} F的加法单位元。如果 k k k不存在,我们说 F \mathbb{F} F的特征值是 0 0 0

线性哈希函数LHF

定义:线性哈希函数族LHF是一对算法 ( P G e n , F ) (PGen, F) (PGen,F),使得:

  1. PGen是一种随机算法,它将安全参数 1 κ 1^\kappa 1κ作为输入,并返回系统参数 p a r par par,它定义了三个集合 S = S ( p a r ) , D = D ( p a r ) , R = R ( p a r ) \mathcal{S}=\mathcal{S}(par),\mathcal{D}=\mathcal{D}(par),\mathcal{R}=\mathcal{R}(par) S=S(par),D=D(par),R=R(par),其中 S \mathcal{S} S是一个field, D , R \mathcal{D},\mathcal{R} D,R S \mathcal{S} S-modules.
    并且要求:在这里插入图片描述
  2. F是一个确定性函数,它以系统参数 p a r par par和一个元素 x ∈ D x\in\mathcal{D} xD作为输入,并返回 R \mathcal{R} R中的一个元素,使得 F ( p a r , ⋅ ) : D → R F(par,\cdot):\mathcal{D}\rightarrow\mathcal{R} F(par,):DR S \mathcal{S} S-modules的一个满同态而且,F不是单同态,这等价于存在 z ∗ ∈ D z^*\in \mathcal{D} zD使得 z ∗ ≠ 0 , F ( p a r , z ∗ ) = 0 z^*\neq 0,F(par,z^*)=0 z=0,F(par,z)=0

注意:最后这句是怎么来的呢,已知满同态的前提下,为什么非单同态等价于存在 z ∗ ∈ D z^*\in \mathcal{D} zD使得 z ∗ ≠ 0 , F ( p a r , z ∗ ) = 0 z^*\neq 0,F(par,z^*)=0 z=0,F(par,z)=0
P r o o f . Proof. Proof.目标的逆反命题是,如果不存在 z ∗ ∈ D z^*\in \mathcal{D} zD使得 z ∗ ≠ 0 , F ( p a r , z ∗ ) = 0 z^*\neq 0,F(par,z^*)=0 z=0,F(par,z)=0,则 F F F是单同态。
(1) 首先,如果不存在这样的 z ∗ z^* z,且 F F F是满射,则一定有且仅有 F ( 0 ) = 0 F(0)=0 F(0)=0
(2) 再假设此时 F F F不满足单同态,则存在 x , y ∈ D , x ≠ y , f ( x ) = f ( y ) x,y\in\mathcal{D},x\neq y,f(x)=f(y) x,yD,x=y,f(x)=f(y);根据同态性质, f ( x ) − f ( y ) = 0 = f ( x − y ) = f ( 0 ) f(x)-f(y)=0=f(x-y)=f(0) f(x)f(y)=0=f(xy)=f(0),所以 f ( x ) = f ( y ) = 0 f(x)=f(y)=0 f(x)=f(y)=0;根据(1)有 x = y = 0 x=y=0 x=y=0,矛盾产生,假设不成立,即 F F F满足单同态。
(3)根据逆否命题,证明成立。

DLP

one-more discrete logarithm assumption (OMDL)

https://doi.org/10.1007/s00145-002-0120-1
对于OMDL问题的定义(又叫Known-Target Discrete Log Problem)
在这里插入图片描述

Algebraic OMDL: A Falsifiable Variant of OMDL

https://link.springer.com/chapter/10.1007/978-3-030-84242-0_8
一个密码假设在算法上是可证伪的,如果在多项式时间内可以被确定给定的算法是否会破坏它。
虽然这对于大多数标准假设(如RSA假设或DL假设)是成立的,但对于OMDL假设显然不成立,因为OMDL挑战者需要向敌手提供无法在p.p.t中实现的DL oracle(除非DL问题是容易的,但这会导致OMDL假设无论如何都不成立)。
观察到,当要求求解算法是代数的的时候,DL oracle实际上可以在p.p.t.中实现。
在OMDL的上下文中,这意味着每当敌手通过DL oracle查询group元素的离散对数时,它都会在由生成元和迄今为止收到的所有DLchallenges构成的基中输出该group元素的表示(它们共同构成了迄今为止它所收到的所有group元素)。
因此,得到了一个可证伪的OMDL假设,称之为代数OMDL (AOMDL)假设。由于每个代数算法也是一种普通算法,因此AOMDL假设立即隐含在已建立的OMDL假设中。
在这里插入图片描述
原文的说法看起来不太好理解,分析一下:

  • 首先敌手手中掌握的信息有:先前查询oracle得到的若干组挑战和对应的离散对数,采样一些 α , β i \alpha,\beta_i α,βi,并结合所有已知的挑战生成新的 X X X进行查询。而挑战者可以用代数方法计算出对应的离散对数。

  • 然后明确一下什么是可证伪的,根据定义可看出是指提供oracle的挑战者算法是否是ppt的。

  • 原始DL的显然是可证伪的。而OMDL中要回答最多n次查询,而挑战者在每次查询时都要回答打破DLP的结果,这个过程一定无法在PPT内完成。

  • 再看AOMDL,挑战者在DLoracle中生成回答的过程是代数的,且每次回答时并不需要打破DLP的算法,因为回答DL挑战的次数 q q q与敌手获得的挑战值 c c c(对应每个离散对数 x i x_i xi)个数无关,所以整个回答DL的过程也是ppt的,即可证伪的。

AOMPR:Algebraic One-More Preimage Resistance for linear hash functions

上篇博客:https://blog.csdn.net/jiongxv/article/details/131110322
原文:https://link.springer.com/chapter/10.1007/978-3-031-30589-4_22
再说到 Algebraic One-More Preimage Resistance
在这里插入图片描述
可以看出AOMPR和AOMDL的区别仅在于将 g x g^x gx运算替换成 F ( ⋅ ) F(\cdot) F(),并且这是一个线性哈希函数LHF。

AOMPR for LHF满足Collision Resistance

Collision Resistance:线性哈希函数的抗碰撞性类似于加密哈希函数的抗碰撞性,它确保很难找到映射到相同输出的两个不同输入
在这里插入图片描述
线性哈希函数族的AOMPR由其抗碰撞性隐含。
在这里插入图片描述

以上是EUROCRYPT 2023论文《Threshold and Multi-signature Schemes from Linear Hash Functions》中所涉及的代数相关知识及引用补充,继续阅读作者如何基于AOMPR构造方案:https://blog.csdn.net/jiongxv/article/details/131110322

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值