数论进阶之-整数分解与筛法(GCD、exGCD、(Eratosthenes)埃氏筛、欧拉筛、区间筛,质因数分解,Stein算法)五千字

目录

一些定义

欧几里得算法

扩展欧几里得算法

例题 青蛙的约会(POJ 1061)

 埃氏筛法

区间筛

例题

欧拉筛

例题

质因数分解 

例题


一些定义

  • 倍数因数整除  (a|b) a是b的因数
  • 最大公因数(a,b) 
  • 最小公倍数 [a,b]
  • 互质,最大公因数为1 互质结论 a与b互质时,若a|br 则  a|r

欧几里得算法

__gcd(a,b)== __gcd(b,a%b) (a%b==0时,return a)

int gcd(int a,int b)
{
    return b==0? a:__gcd(b,a%b);
    
}

例题 天平

aL=bR

二者同时除以__gcd(a,b)

a/__gcd(a,b) L=b/__gcd(a,b)

红色互质

L的存在导致

a/__gcd(a,b) | b/__gcd(a,b) R

进而

a/__gcd(a,b) | R

进而,R最小时是a/__gcd(a,b)

同理可求得L最小值

证毕

扩展欧几里得算法

若a,b,不全为0,存在x,y整数,使得 ax+by=(a,b)

设 a>b

推理1 显然b=0时,__gcd(a,b)=a 此时 x=1,y=0

推理2 ab!=0时

ax1+by1=gcd(a,b)

根据欧几里得算法,代换掉a,b,gcd(a,b)

bx2+(a%b)y2=gcd(b,a%b)

进而

ax1+by1=bx2+(a%b)y2

              =bx2 +( a-(a/b)*b )y2

              =bx2 + ay2 -(a/b)*b y2 红色为常数

故  x1=y2  y1=x2-(a/b)*y2

即递归不断递推时,一旦遇到b=0,立马返回,回溯时,不断更新前面的值,直到找到一组解

int exgcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x=1;
        y=0;
        return a;
        
    }
    
    int r=exgcd(b,a%b,x,y);
    
    int t=y;  //更深层递归结束时,修改了y也就是y2
    
    y=x-(a/b)*y;  // y1=x2-(a/b)*y2
    
    x=t;      //x1=y2
    
    return r;  //普通欧几里得算法
    
    
}

注意我们求出的x,y是一组任意解,但解的个数是无穷的

设求出x0,y0

(   x0+k * b/(a,b) , y0- k * a/ (a,b)   )  

a(x0+k * b/(a,b))+b (y0- k * a/ (a,b) )=(a,b)   展开相消即可

例题 青蛙的约会(POJ 1061)

设跳了 u次

x+um=y+un+ vL

u(m-n) - vL = y-x 

u(n-m)+vL=x-y

此时我们发现,b就是L,为整数,而a是可能为负数的,而gcd对非负整数才有意义,故此时等式两边取负 a,c变成了相反数,b不去改变,可理解为v自动变号

扩欧求出一组u,v特解

u a + v b =exgcd

我们知道x= x0+ k * b/(a,b) ,而借助取模乘加运算得到正数的性质

任意的x = xmin + k*b/(a,b)

即( x mod b/(a,b) +  b/(a,b) ) mod ( b/(a,b) )  = xmin  

这样我们便对 u a + v b =exgcd  求出一组最小正整数解

但还要注意的是

我们要求的是

u(n-m)+vL=x-y 即  u a + v b= x-y  故再乘上 x-y/exgcd即可

还有一个细节是判断无解,由于我们扩展欧几里得求出的是欧几里得算法得到的gcd,而要满足原方程组有解,必须保证c是gcd的整数倍,这样才能在系数上扩大若干倍得到原方程解

#include <iostream>
# include<cstring>

# include<algorithm>

# define mod 998244353
using namespace std;

typedef long long int ll;


ll exgcd(ll a,ll b,ll &x,ll &y)
{

    if(!b)
    {
        x=1;
        y=0;
        return a;
    }

    ll r=exgcd(b,a%b,x,y);
    ll t=y;  //更深层递归结束时,修改了y也就是y2
    y=x-(a/b)*y;  // y1=x2-(a/b)*y2
    x=t;      //x1=y2
    return r;  //普通欧几里得算法

}

int main()
{
   ll n,m,x,y,l;

   cin>>x>>y>>m>>n>>l;

   ll a=n-m;
   ll b=l;
   ll c=x-y;


   if(a<0)
   {
       a=-a;
       c=-c;
   }

   ll x1=0,y1=0;

   ll exg=exgcd(a,b,x1,y1);

   if(c%exg)
   {
       cout<<"Impossible";
       return 0;

   }
   else
   {
       ll mo= b/exg;
       cout<<( (x1 *(c/exg) )%mo+ mo)%mo;

   }

   return 0;
   

}

 埃氏筛法

核心思想,筛掉质数的倍数

以下为优化后的埃氏筛,复杂度接近On,值得注意的是,我们仅仅利用sqrt(n)以内的素数就可以筛掉全部n以内的合数。这一特性常常用来进行区间筛法。

#include <iostream>
# include<cstring>

# include<algorithm>

# define mod 998244353
using namespace std;

typedef long long int ll;

bool not_prime[10000000];

int prime[1000000],tot=0;


int main()
{
     
     
    int n;
    
    cin>>n;
    
    for(int i=2;i*i<=n;i++)
    {
        if(!not_prime[i])
        {
            prime[++tot]=i;
            
            for(int j=i*i;j<=n;j+=i)
            {
                not_prime[j]=1;
                
            }
        }
    }
   
   return 0;
   

}

区间筛

在大数范围内挑选一个长度较长但不至于过长的区间,要求筛选出其中的质数。

根据埃氏筛核心思想,先预处理出大数范围内能够筛选出全部合数的质数数组,再将这些质数进行小区间的筛选。方法与埃氏筛一样,只是布尔数组的下标1代表L,其余各下标都进行了平移。为了精确筛选,我们直接定位在第一个大于等于L的prime[i]的若干倍上,根据数论知识,这个点((L+prime[i])/prime[i]))*prime[i] ;

例题

Prime Distance
#include <iostream>
# include<cstring>

# include<algorithm>
# include<math.h>

# define mod 998244353
using namespace std;

typedef long long int ll;

bool not_prime[10000000];

int prime[1000000],tot=0;

int pprime[1000000];

bool not_prime1[1000000+10];

int main()
{




    for(ll i=2;i*i<=2147483647;i++)
    {
        if(!not_prime[i])
        {
            prime[++tot]=i;

            for(ll j=i*i;j*j<=2147483647;j+=i)
                not_prime[i]=1;

        }
    }

    int t;

    cin>>t;

    while(t--)
    {
        ll L,R;

        cin>>L>>R;
        if(L==1)
            L++;


        memset(not_prime1,0,sizeof(not_prime1));


        for(ll i=1;i<=tot&&prime[i]*prime[i]<=R;i++)
        {

            for(ll j=(L+prime[i])/prime[i]*prime[i];j<=R;j+=prime[i])
            {

                not_prime1[j-L+1]=1;
            }



        }

        int cnt=0;

        for(ll i=1;i<=R-L+1;i++)
        {
          if(!not_prime1[i])
            pprime[++cnt]=i+L-1;

        }


        if(cnt<2)
        {
            cout<<"There are no adjacent primes."<<endl;

            continue;
        }

        ll Min=0x3f3f3f3f,Max=-1;

        ll A,B,C,D;


        for(int i=2;i<=cnt;i++)
        {
        if(pprime[i] - pprime[i - 1] < Min) Min = pprime[i] - pprime[i - 1], A = pprime[i - 1], B = pprime[i];
        if(pprime[i] - pprime[i - 1] > Max) Max = pprime[i] - pprime[i - 1], C = pprime[i - 1], D = pprime[i];
        }

       printf("%lld,%lld are closest, %lld,%lld are most distant.\n",A,B,C,D);



    }


   return 0;


}

欧拉筛

每个合数只需要被其最小的质因子筛掉

on遍历时,若是质数加入质数数组,无论质数与否,都参与筛选,在合理范围内,筛掉本身与所以质数的乘积,一旦可以整除某个质数,终止循环

#include <iostream>
# include<cstring>

# include<algorithm>

# define mod 998244353
using namespace std;

typedef long long int ll;


bool not_prime[10000000+10];
int prime[1000000+10],tot=0;

int main()
{

    int n;
    cin>>n;

    for(int i=2;i<=n;i++)
    {
        if(!not_prime[i])
        {
            prime[++tot]=i;

        }

        for(int j=1;j<=tot&&i*prime[j]<=n;j++)
        {
            not_prime[prime[j]*i]=1;

            if(i%prime[j]==0)
                break;

        }
    }



  for(int i=1;i<=tot;i++)
  {
      cout<<prime[i]<<" ";

  }
   return 0;


}

例题

Sum of Consecutive Prime Numbers

先用筛法筛出全部素数,再利用尺取法进行暴力枚举即可

#include <iostream>
# include<cstring>
# include<map>
# include<algorithm>

# define mod 998244353
using namespace std;

typedef long long int ll;


bool not_prime[40000000+10];
int prime[40000000];
int tot=0;


int main()
{


   for(int i=2;i<=4*10000000;i++)
   {
       if(!not_prime[i])
       {
           prime[++tot]=i;

       }

       for(int j=1;(ll)i*prime[j]<=4*10000000&&j<=tot;j++)
       {
           not_prime[i*prime[j]]=1;

           if(i%prime[j]==0)
            break;

       }
   }



   int t;

   cin>>t;

   while(t--)
   {

       int n;

       cin>>n;

       int ans=0;

       int left=1,right=1;

       ll tempsum=0;

       while(1)
       {

           while(tempsum+prime[right]<=n&&right<=tot)
            {
                tempsum+=prime[right];

                right++;

            }

           if(tempsum==0)
            break;

           if(tempsum==n)
            ans++;

            tempsum-=prime[left];
            left++;


       }
       cout<<ans<<endl;


   }



   return 0;


}

质因数分解 

#include <iostream>
# include<cstring>

# include<algorithm>
# include<math.h>

# define mod 998244353
using namespace std;

typedef long long int ll;


int main()
{


    int n;
    cin>>n;


    for(int i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            cout<<i<<" ";
            while(n%i==0)
                n/=i;

        }
    }

    if(n>1)
        cout<<n<<" ";


   return 0;


}

例题

Prime Land
#include <iostream>
# include<cstring>
# include<map>

# include<algorithm>
# include<math.h>

# define mod 998244353
using namespace std;

typedef long long int ll;

map<int,int>m;

int main()
{


    int t;

    cin>>t;

    while(t--)
    {
        int k;
        cin>>k;
        int n=1;
        m.clear();
        for(int i=1; i<=k; i++)
        {
            int x,y;
            cin>>x>>y;
            while(y--)
              n*=x;
        }
        n--;
        for(int i=2; i*i<=n; i++)
        {
            int cnt=0;
            if(n%i==0)
            {

                while(n%i==0)
                {
                    n/=i;
                    cnt++;

                }
                m[i]=cnt;

            }
        }

        if(n>1)
        {
            m[n]++;
        }

        for(auto it=m.rbegin(); it!=m.rend(); it++)
            cout<<it->first<<" "<<it->second<<" ";
        cout<<endl;


    }

    return 0;

}

Stein算法

大整数GCD

a=0 || b=0  (0,b)=b,(a,0)=a

a,b皆偶 (a,b)=(a/2,b/2)

一偶一奇 (a,b)=(a/2,b) //  (a,b/2)  偶数除以二

a,b皆奇数 (a,b) =  (b,a-b) 其中a>b

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qinsanma and Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值