检测、分割、分类
文章平均质量分 91
讲解深度学习领域里的分类、检测、分割理论及代码实现
竹叶青lvye
行走的路上自会有很多精彩,要向前看。。。
展开
-
pointNet训练预测自己的数据集Charles版本(二)
这边博主只做3种标签,桌面像素打标签为0,书本打标签1,帽子打标签为2,杯子碗一类的打标签为3。先对点云使用如上的剪刀工具,把点云分割成桌面点云和碗两部分点云,然后点击工具栏的“+”符号。01.label是标注数据,01.ply是点云数据,其它类似,可看到点云和标注数据是分离开来的,这边博主手写了如下脚本来合并01.label和01.ply文件,以将label中数据作为Scalar field。然后保存桌子点云到本地磁盘上, 其它点云文件(ply)文件类似,从中只获得桌子的点云。原创 2023-06-26 23:42:04 · 2730 阅读 · 5 评论 -
pointNet训练预测自己的数据集Charles版本(一)
博主有逐步debug过,对其里面的机制还是了解的,感兴趣的童鞋可以自行去分析下,值得去做这样的事情。这里有个小插曲,即博主在cmd终端train时候,训练的很快,在pycharm中训练的很慢,发现是因为pycharm环境变量中并没有修正最新的cuda的路径,而导致跑在gpu上异常,模型训练实际是跑在cpu上的,所以这里需要结合自己的路径重新配置下。当前博主用的虚拟环境下的tensorflow版本是2.4.0, 所以要对源代码进行一些修改,才能跑起来,可以参考博主之前的博客进行修改。原创 2023-06-03 22:04:27 · 1931 阅读 · 2 评论 -
知识点快速回顾
常常一段时间不接触,一些知识点就陌生了,此贴也是为了自己能够快速回忆起来,重新捡起知识点。原创 2022-09-10 14:03:10 · 528 阅读 · 0 评论 -
语义分割之SegNet训练预测自己的数据集
具体可参见博客https://blog.csdn.net/jiugeshao/article/details/109964611https://blog.csdn.net/antkillerfarm/article/details/79524417https://zhuanlan.zhihu.com/p/165563941下面说明Segnet的代码实现原创 2021-02-28 17:04:01 · 3658 阅读 · 3 评论 -
语义分割之FCN训练预测自己的数据集
之前博客https://blog.csdn.net/jiugeshao/article/details/112093981中提到,接下来主精力还是先放在深度学习分类,检测,分割算法上面。之前虽然也对各算法做过了解,但没有一一用代码实现过,博主想花一段时间把这些算法大概实现下。就从FCN开始吧,博主当前电脑的环境配置也大概说下:Anaconda3的python环境tensorflow2.3.1cuda10.1cudnn7.6具体可参见我的博客https://blog.csdn.ne原创 2021-02-17 23:17:08 · 4323 阅读 · 2 评论 -
目标分类、语义分割、目标检测中的深度学习算法阶段性总结
从博客https://blog.csdn.net/jiugeshao/article/details/112093981写完后,整了一段时间温故了这三个方面的算法知识,同时也找寻了相应的代码去实现这些算法,并在自己的数据集上进行测试。当前对这三个方面的知识点还记忆犹新,结合所看的论文博客归纳下自己的理解(不涉及细节,大方向的了解)。后面会把目标检测和目标分类中的常用算法实现一遍,然后就打算转战Linux下实现。一.目标分类1. 从经典的LetNet, AlexNet, VggNet,GooleNet原创 2021-03-27 23:04:04 · 3162 阅读 · 1 评论 -
使用image-segmentation-keras的SegNet训练和预测自己的数据集
前面我的两篇博客分别介绍了语义分割FCN及SegNet的算法重点知识及代码实现,最近在github上又fork了一个好资源https://github.com/divamgupta/image-segmentation-keras,这里分享一下。该资源实现了FCN,UNet, SegNet, PSPNet网络,本篇以SegNet为例来说明下如何使用其来训练和预测自己的数据集。值得一提的是,该资源是在最新的tensorflow2.x框架下实现的,不像很多其它资源还是基于tensorflow1.x搭配老原创 2021-03-20 14:01:00 · 2905 阅读 · 5 评论 -
ultralytics/yolov3训练预测自己数据集的配置过程
此时查看文件,发现需要yolov3.pt(默认参数),但该文件并没有随git该目录时一起下载,github博主提供了这些文件的下载路径,4. 运行detect.py, 在runs文件夹的detect文件夹中能看到整体测试集的预测结果,这边的exp也是每一次预测的历史记录。yolov3的一些资料可见博主的博客。该文件夹中存在多个exp关键字的文件夹,其每一次训练,exp后面的索引都会增1,以记录你的训练历史。运行,在anno文件夹下,会看到对应每一个xml文件,都会生成一个对应的txt文件。原创 2021-04-24 16:31:11 · 7909 阅读 · 12 评论 -
balancap/SSD-Tensorflow使用及训练预测自己的数据集
该版本的SSD实现github路径https://github.com/balancap/SSD-Tensorflow所用库配置: python 3.6.0 tensorflow 1.11 Keras 2.1.5下载完毕后checkpoints下已经有训练好的模型,可以用此模型来预测下自带的测试图片;以及对视频内物体进行定位;此可参见该博客https://blog.csdn.net/zzz_cmi......原创 2021-05-19 19:54:15 · 1019 阅读 · 2 评论 -
深度学习之检测、分类及分割(二)
十一. ResNet在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题计算资源的消耗 模型容易过拟合 梯度消失/梯度爆炸问题的产生残差网络1.1 残差块残差网络是由一系列残差块组成的(图1)。一个残差块可以用表示为:残差块分成两部分直接映射部分和残差部分。是直接映射,反应在图1中是左边的曲线;是残差部分,一般由两个或者三个卷积操作构成,...原创 2020-06-14 22:03:31 · 2591 阅读 · 0 评论 -
深度学习之检测、分类及分割(一)
整理下目标检测常用算法的知识:一. RCNN (Regions with CNN) RBG1. 候选区域选择(region proposal), 用到了SelectiveSearch2. 对于每个区域利用CNN抽取一个固定长度的特征向量(Alexnet, 基于Caffe进行的代码开发)3. 再对每个区域利用SVM进行目标分类。同时做边界回归。技巧:采用在ImageNet上已经训练好的模型,然后在PASCAL VOC数据集上进行fine-tune。做迁移学习Selective sear原创 2020-06-14 22:19:38 · 5580 阅读 · 0 评论