程序员的数学
文章平均质量分 91
竹叶青lvye
行走的路上自会有很多精彩,要向前看。。。
展开
-
图像处理常用算法介绍
重点是了解DOG(Difference of Gaussian)高斯差分图像是如何生成的,以及求取关键点,求取关键点的主方向,并以此主方向来做坐标系,梯度方向和梯度幅值按新的坐标系进行计算,构造一个特征向量描述子。这里其实就是通过PCA去求新的坐标系的各坐标轴,一个轴可以认为就是一个特征向量。, 当是一张2000*2000大小图片时,由于直接将图像拉伸为向量,一个样本将达到400万长的一个维度。此篇简单回顾下图像处理领域常用到的一些算法,这边只对每个知识点重要的点做一些记录,便于快速的知其形,会其意。原创 2024-01-27 19:58:59 · 3637 阅读 · 1 评论 -
卡尔曼滤波、马尔科夫模型、粒子滤波、TSP问题知识点回顾
帖子中的推导是针对某个观测序列出现的概率,其是要求出所有可能的情况,故是在求和计算。那么在算到第3个观测序列是白的时候,要考虑这是从第一个盒子、第二个盒子、第三个盒子拿到的白色的情况,同时也要结合第2序列是从第一个盒子中取出白色,第二个盒子中取出白色,第三个盒子中取出白色这三种情况来计算。resample函数中代码如下,这边的意思是根据权重来产生和该粒子相同的新粒子的个数,那么权重大的就会多复制一些粒子,由于一些粒子不产生新粒子了,那么有可能k的值还不足n个,那么剩余差的粒子统一由最大的粒子来复制。原创 2024-01-20 12:14:50 · 1204 阅读 · 0 评论 -
现代控制理论基础
在学习卡尔曼滤波、粒子滤波、隐马尔可夫模型时候,经常会提到状态方程的概念,这边联想到当时学习过的一门课程现代控制理论,这边就简单回顾一下吧。在回顾之前,串联下高等数学中微分方程的知识点。原创 2024-01-14 20:57:25 · 1103 阅读 · 0 评论 -
线性代数基础知识
一些算法中常会用到线性代数的一些知识,为了便于理解和快速回忆,博主这边对常用的一些知识点做下整理,主要来源于如下这本书籍。1. 矩阵不仅仅是数字排列而已,不然也不会有那么大精力研究它。关于映射,变换的一些帖子可以参考如下的。17.矩阵和坐标系变换的关系。行列式计算也可参考其它帖子。14. Jordan标准型。11. 特征值和特征向量。8. 线性方程组的解。9. 单射,满设,双射。12. 矩阵对角化。原创 2024-01-01 11:25:01 · 2074 阅读 · 0 评论 -
概率论与数理统计基础知识
联合分布可以是某个动作在重复做的事件,大数定律描述的也是一个事件,这个事件由重复的某一个动作构成。随着n的增大,Z的方差为0,此时z的期望值即接近为统计出来的平均值。3.随机事件,是指的一个事件,一件事情,如一次实验,要求是其结果是随机的,可以有很多种,如掷骰子有六种结果,但投之前是不可以确定的.而随机变量用来表示随机事件的一种结果或几种结果的集合,如A表示投掷的结果是1,B表示投掷的结果为1或2,等等,总之,随机变量是结果的集合的子集,包括全集。2.事件的概率是衡量该事件发生的可能性的量度。原创 2023-12-10 14:35:50 · 1102 阅读 · 0 评论