4月19日,毫末的AI DAY,我没顾上看直播,本来打算会后只发一则“简单的小新闻”,结果呢,一看顾维灏的演讲特别“硬核”,很值得认真读一下。在这次发布会的前后一周,毫末技术总监潘兴也有一次与媒体的沟通,并在分享结束后接受了媒体群访,从演讲到访谈同样是干货满满。
我在朋友圈简单地说评论了几句后,竟然有不少人私信问我“演讲稿在哪里可以看到”。为响应广大读者的需求,我决定将这些干货消化之后,梳理出一些精华发出。本文涵盖的内容包括:
1)毫末的数据智能体系MANA
2)Transformer,发挥数据优势的关键武器
3)在轻高精地图的情况下实现城市道路自动驾驶
4)在决策环节引入深度学习算法
5)L2车辆的收集到的数据如何用于L4
6)可否将各场景的数据“打通”
7)从用户视角对ADAS能力做“分级”
8)开放的商业模式
在写这篇文章的过程中,我多次向毫末市场部的谢海杰请教,也参考并引用了车右智能在去年12月发的文章《毫末智行的感知架构在演进中——Transformer在毫末的应用》及焉知新能源在今年3月份的文章《我们研究了特斯拉、毫末「自动驾驶算法」的秘密》中的大量内容,在此向这两篇文章的作者表示感谢。
一.数据智能体系MANA
01
基本概念
2021年Q4,毫末智行发布了自动驾驶数据智能体系MANA。MANA是毫末以海量数据为基础的一整套数据处理工具,包含了数据标注、算法模型、测试验证系统、仿真模拟工具以及计算硬件。MANA是毫末所有产品进化的核心动力。
MANA体系由TARS、LUCAS、VENUS、BASE四个子系统组成。
其中,TARS是毫末在车端研发的算法原型,包括TrasView(感知),TrasGo(认知),规划决策控制、Map(地图定位),Meta(仿真引擎),更多为车端算法服务。
LUCAS是对算法在应用场景上的实践,包括高性能计算、诊断、验证、转化等核心能力;VENUS是数据可视化化系统,包括软件和算法的执行情况,对场景的还原,以及数据洞察等能力;BASE包括了数据的获取,传输,存储,计算,以及新的数据分析和数据服务。
MANA 感知系统的特点在于 “为全局任务设计了一个提取全局信息的 Neck 网络”。这一点其实是非常重要的,因为全局任务(比如可行驶道路的检测)非常依赖于对场景的理解,而对场景的理解又依赖于对全局信息的提取。
截止目前,MANA已完成超过19万小时的学习时长,其虚拟驾龄已相当于人类司机2万年的驾龄。
02
MANA典型应用
(1)数据标注
数据标注在数据处理的成本中占比极高,因而,通过提高自动化水平来降低标注成本也是各家公司努力的方向,目前,毫末的数据标注自动化水平已经达到了80%。在实现方法上,毫末通过“目标粗定位”和“属性精细估计”两个阶段来进行。
“目标粗定位”阶段的第一个分支采用了高精度3D障碍物检测网络和3D障碍物跟踪算法,对3D目标进行检测和跟踪;第二个分支采用了时空金字塔网络内部的2D空间卷积和1D时间卷积,对3D目标的运动属性进行检测,然后系统再将这两个分支检测的结果进行聚合和分类。
“属性精细估计”阶段会根据物体运动状态分类结果来区分静态物体和动态物体,对不同类型的物体有不同的属性精细估计策略。
静态障碍物的标注相对来说会简单一些,而动态障碍物的标注,除了标静态障碍物必须有的属性,也需要对动态障碍物特有的一些关键属性,比如朝向角、运动姿态、速度等也会再进行详细的标注。
对于动态物体的属性精细估计,包括物体尺寸估计和位姿估计,这也是自动标注的重点和难点。
对此,毫末的做法是:
1)在自车和目标物相对运动的过程中,系统从多角度、多维度对目标物进行观测,然后,有效利用多帧点云提供的时序信息对障碍物进行运动检测;
2)再采用以目标为中心的跨时间点云聚合方法,对这些点云做一次压缩,让其从稀疏点云变成稠密的点云;
3)点云压缩后,利用改进的PointNet网络进行精确的3D框回归,再次对物体的运动轨迹进行全局优化实现位姿的精确估计。
目前,这一套方法已经进入毫末的生产环节。
(2)数据存储
数据存储方面,目前的难点主要有两个:如何降低成本;如何结合自动驾驶的特性进行更好地处理。
为降低存储成本,毫末搭建了数据挖掘的体系LUCAS,该体系从用户回传的海量数据中筛选出价值的数据,然后把这些数据该送标的送标、该训练的训练、该使用的使用、该缓存的缓存。
对这些数据,毫末会按其价值做分级管理——主要是根据数据的新鲜度、需求紧急程度、数据用途等维度,对数据划分热度级别。
比如,对于几个月之前的数据,毫末会对其进行编码并存储在数据库中,而原始数据则存储在成本更低的地方。
比如,毫末会根据自动驾驶对数据的使用需求,对数据进行分类,比如事故类、售后类、接管类、体感类、产品类、研发类等。由于需求不同,不同类别的数据生命周期、实效要求、处理流程、处理成本均不同,会采取不同的策略进行存储。
自动化的筛选手段再加上分级存储策略,数据的存储成本自然会降低。
(3)数据融合
为做好视觉和激光雷达数据的融合,毫末将 Transformer 算法引入到其数据智能体系 MANA 中。
2021年12月,顾维灏在毫末AI DAY 上的介绍,MANA 系统采用 Transformer 在底层融合视觉和激光雷达数据,进而实现空间、时间、传感器三位一体的深层次感知。
不同于目标级的后融合,毫末使用Transformer对图片、点云提取出来的特征向量进行前融合,融合后再通过神经网络进行目标预测。这样既可以解